
Comparative Constructions:

Addendum to the Paper “Gradable Comparatives”

Iddo Lev

June 18, 2005

1 Introduction

In (Lev, 2005), I explored comparative constructions that are based on gradable
adjectives. The aims of the present paper are:

1. Extending the analysis to cover non-gradable comparatives (such as different
and similar), nominal comparatives, and adverbial comparatives.

2. Addressing the open questions there.

3. Investigating the interaction of comparative constructions with an independently-
motivated analysis for ellipsis.

4. Investigating the interaction of comparative constructions with an independently-
motivated analysis for reciprocals.

5. Extending the analysis to the superlative cases.

Throughout this paper, a reference GC(n)efers to the numbered item (n) in (Lev,
2005).

2 Non-Gradable Comparatives

2.1 Overview

The meaning of different, same, similar, identical, equivalent, etc. typically relies on
some salient dimension in the context of utterance, as indicated by its interpreta-
tion in (1). This contextually salient feature may be the item’s identity, its type,
etc. (Nunberg, 1984).

(1) a. diff[f](x, y) ≡ f(x) 6= f(y), for some salient feature f .

b. • This book is different from that book.
• diff[f](this-book, that-book)
• for example, f = λx.author-of(x)

Non-gradable comparative constructions are closely related to gradable ones, and
the parallels can be seen in the following table:

1

(2) gradable case non-gradable case
order relation < equivalence relation: =, 6=, ≈, ≡, . . .
a scale S, ordered by < an unordered set V of values
a measure function from entities a salient feature function from entities

to degrees in S to values in V
comparators (on degrees from S): comparators (on values from V):

more . . . than, as . . . as different . . . than, similar . . . to

There are two interesting differences between the cases. The first is that S is
ordered on a scale, while the set of values V in the non-gradable case is only divided
into equivalence classes. So instead of a table like GC(11), we have the following:1

(3) the comparator operator meaning
different diff 6=
same same =
similar simil ≈ (some similarity relation)
equivalent equiv ≡ (some equivalence relation)
. . .

Since S is ordered, a gradable comparator can be modified by an explicit value
from S that signifies the distance on the scale between the two compared values,
whereas this is usually unavailable for the non-gradable case (except in a looser sense
as in (5)):

(4) a. John is [2 inches] taller than Bill.
b. John is ??? different than Bill.

(5) a. John is much taller than Bill.
b. John is very similar to Bill.

The second difference is that the measure function is always explicitly mentioned
in the gradable case (e.g. “more expensive” utilizes a mapping from entities to their
price), whereas the salient feature function is never explicitly mentioned in the non-
gradable case as part of the construction itself (thus, “different” could mean “different
w.r.t. height, name, author, etc.). If we tried to force parallelism explicitly between
the two cases, we would get something like this:

(6) (make explicit the salient feature:)
a. This present is more expensive than that present.
b. This present is diff f than that present.

Moreover, the value in S may be expressed explicitly, whereas the value in V may
never be so expressed. Continuing the forced parallelism, we would get something
like this:

1Of course, the set V could be ordered, but the point is that non-gradable comparatives would
not utilize this ordering. For example, the salient feature function in (1) could be length-of, but
different would only compare the lengths using equality and not ‘<’.

2

(7) a. John is [6 feet] tall.
b. John is v f .
(where f is the salient feature, and f(john) = v ∈ V)

It is easier to see this point by noticing that while phrasal comparatives and com-
parative deletion exist for both gradable and non-gradable comparatives (8), (9),
comparative subdeletion only exists for the gradable case (10), (11):

(8) (predicative, phrasal)
a. John is taller than Bill.
b. John is different than Bill.

(attributive, phrasal)
c. John read a longer book than Bill.
d. John read a different book than Bill.

(9) (predicative, deletion)
a. John is taller than Bill was.
b. John is different than Bill was.

(attributive, deletion)
c. John read a longer book than Bill wrote.
d. John read a different book than Bill wrote.

(10) (predicative, subdeletion)
a. John is taller than Bill is wide.
b. * John is different than Bill is ???.

(11) (attributive, subdeletion)
a. John read a longer book than Bill wrote an interesting one.
b. * John read a different book than Bill wrote a ??? one.

There is no word that could stand for the ‘???’ here (“different” won’t do because
it already includes the comparator, and putting it there would be parallel to saying:
* John is taller than Bill is wider.)

2.2 Syntax-Semantics Interface

Modulo these differences, we would expect to see the same behavior in the gradable
and non-gradable cases, and this indeed seems to be true (see e.g. (Alrenga, 2005) for
a long list of parallel behaviors between gradable and non-gradable comparatives).
Here is an example for the predicative phrasal case. We simply take GC(35) and
do nothing more than replace the comparator more with the comparator diff, and
specify that the salient feature function 5 comes from the context.

(12) “different” (as in: “John is different than Bill”)

local

cat

head adj[prd +]

subj 〈np: 1 〉
comp 〈 〉

sem-r [head-r 2 , val-r 4]

glue

〈
5 : 1

e → 4
d,

λGλyλx.diff(G(x), G(y)) : (1
e → 4

d) → 3
e → 1

e → 2
t

〉

context [sal-feature-func 5]

nonlocal|inher|extra {pp[than]: 3 }

3

If the salient feature function is for example λx.name-of(x), the final semantics we
would obtain for “John is different than Bill” is diff(name-of(john),name-of(bill)).

The three other versions of “different” (predicative deletion, and the two attribu-
tive cases) are obtained from their gradable counterparts in exactly the same way.

2.3 Comparison to Other Work

Heim (1985) discusses in brief non-gradable comparatives, and although her analysis
of them parallels her analysis for the gradable case, both analyses suffer from the
same problems as discussed in (Lev, 2005, sec.7.3).

Alrenga (2005) notices the many similarities in the distribution of gradable and
non-gradable adjectives. However, he does not propose a uniform analysis for both,
as was done here. Instead, he proposes that while gradable comparatives express
relations between sets of degrees, different, same, and like express relations between
sets of contextually relevant properties. Thus, the meaning of (13)a is (13)b.

(13) a. I am different than I used to be.
b. There is some difference between the properties that I used to possess and
those that I currently possess. (set non-identity)

This analysis is a special case of my proposal, since one can take the salient feature
function f to be a function that returns the contextually relevant set of properties of
an individual. Then different and same express non-equality and equality between
such sets, similar expresses non-empty intersection between such sets, and so on. It’s
not clear yet whether restricting our view to sets of contextually relevant properties
is the right analysis in all cases. Moreover, my analysis showed that the semantics
of gradable and non-gradable comparatives have the same structure, except that the
relevant feature function is not expressed in the latter case. Other than that, Alrenga
(2005) does not at all address the syntax-semantics interface of the comparatives,
i.e. how the semantics is actually obtained from the syntax.

3 Nominal Comparatives

3.1 Background: Determiners and Quantifiers

Here is an example of a simple quantifier determiner:

(14) “every”:

cat

[
head

det

[
spec n’: 3 : 1→ 2

]]

glue
〈
λPλS.every(P, S) : ∀Ht. (1

e → 2
t) → (3

e → Ht) → Ht
〉

Recall the abbreviations from Figure 1 in (Lev, 2005, sec. 3.2): the expression
n’: 3 : 1→ 2 is simply a shorthand for N’ that has in it:

(15)
[
sem-r [head-r 3 , var-r 1 , restr-r 2]

]

4

According to the spec principle in (Pollard and Sag, 1994, p.51), the spec value
of the determiner will be identified with the synsem of the noun. Thus, (14) can
combine with GC(25) to produce:

(16) “every student”:

cat

[
head noun
spr 〈 〉

]

sem-r

head-r 3 [3rd,sing]
var-r 1

restr-r 2

glue

〈
λPλS.every(P, S) : ∀Ht. (1

e → 2
t) → (3

e → Ht) → Ht,

λx.student(x) : 1
e → 2

t

〉

And this can further participate in a larger sentence:

(17) “John saw every student”:

cat

[
head verb
subj 〈 〉

]

sem-r 4

glue

〈λPλS.every(P, S) : ∀Ht. (1
e → 2

t) → (3
e → Ht) → Ht,

λx.student(x) : 1
e → 2

t,

λxλy.saw(x, y) : 5
e → 3

e → 4
t,

john : 5
e

〉

The glue derivation will combine john with saw and every with student to pro-
duce:

(18) λy.saw(john, y) : 3 e → 4 t,
λS.every(λx.student(x), S) : ∀Ht. → (3 e → Ht) → Ht

We can now explain what Ht means. This is a piece of representation that is written
as you just saw above as part of the statements inside glue features. This variable
has absolutely no interaction with the syntactic feature structures, and plays no role
during the construction of those structures. When the glue statements are taken
to the side for the purpose of finding glue derivations, the boxed numbers are now
treated as constants in the logical language, whereas Ht is treated as a variable that
can range over such constants. Thus, if Ht is instantiated to 4 t, we get:

(19) λS.every(λx.student(x), S) : (3 e → 4 t) → 4 t

This is a quantifier of type (e → t) → t, as expected, that can combine correctly with
the first statement of (18) to produce the correct result:

(20) every(λx.student(x), λy.saw(john, y)) : 4 t

5

Notice that only after all of the sentence’s GS statements are collected together do
we start looking for ways to combine them. Therefore, the order of their combination
is completely independent of the fact that in the syntax, VP’s combined with their
subjects last. Thus, the glue derivation combined john with λxλy.saw(x, y) first to
get λy.saw(john, y) : 3 e → 4 t, and then “every student” combined with this. This
approach can create the effect of the quantifier storage in (Pollard and Sag, 1994),
but it is much more general and flexible: it works not only for determiners but for any
other semantic operator whose combination with the rest of the semantic material is
underspecified by the syntax, including negation, modals, tense, floating quantifiers,
polyadic quantifiers, etc.

3.2 Type 〈1, 1〉 Quantifiers

(21) a. (No) more/less than three students attended the party.
b. At least/most three students attended the party.

More/less/at-least/at-most simply expect a number on their comps list. No is a
determiner modifier. This is straightforward and has no extraposition:

(22) * More students attended the party than three.

(23) “more” (as in: “More than three students laughed”)

cat

head

det

[
spec n’: 3 : 1→ 2

]

comps 〈pp[than,prd-,comps〈NumP〉]: 4 〉

glue

〈
λnλPλS.more(|P ∩ S|, n) :
∀Ht. 4

n → (1
e → 2

t) → (3
e → Ht) → Ht

〉

3.3 Type 〈1, 1, 1〉 Quantifiers

Recall that one of the options for gradable comparatives was direct degree com-
parison, where a degree was explicitly specified, against which the measure of the
individual was compared – see (Lev, 2005, sec. 4.2). This parallels the type 〈1, 1〉
case we showed in the previous subsection. In both cases, there is no extraposition.

All the other options for comparatives had indirect descriptions of this degree
using various complements, which could be extraposed. The same occurs with nu-
merical determiners. Instead of specifying a direct number, some complement phrase
includes an indirect description of this number.

The first case is of a type 〈1, 1, 1〉 quantifier, as shown in (24)a. The complement
may extrapose to the right, as shown in (24)b.

(24) a. More students than teachers laughed.
b. More students laughed than teachers.

So now, more is a determiner that modifies the N’ as usual, and also expects on its
extra list another noun:

6

(25) “more” (as in: “More students than teachers laughed”)

local

cat

[
head

det

[
spec n’: 3 : 1→ 2

]]

glue

〈
λQλPλS.more(|P ∩ S|, |Q ∩ S|) :
∀Ht. (4

e → 5
t) → (1

e → 2
t) → (3

e → Ht) → Ht

〉

nonlocal|inher|extra {pp[than,prd−,comps〈n’[pl]: 4→ 5 〉]}

The NP “teachers” lacks a determiner, so it’s easier to treat it as N’. The resulting
semantics for the sentence would come out as:

(26) more(|student ∩ sneezed|, |teacher ∩ sneezed|).
The same entry would also work for “More students laughed than teachers”. However,
the extraposition rule GC(37) would have to be revised to account for the possibilities
here. Perhaps a feature on the extraposed element which is selected for by the
comparator could help the rule determine where the element can be discharged.

Many cases could be accounted for along these lines. The case shown in (27)
(which some have claimed involves a type 〈1, 1, 1, 1〉 quantifier operating on the four
sets of students, attending-party, teachers, and attending-reception), would have a
similar entry to (25) except that it would expect a complement which is a sentence
marked with than and missing a numeric quantifier. We also get the three attributive
cases in (28), where the sentence complement in (28)a is missing a numeric quantifier,
in (28)b an NP, and (28)c should have a parallel solution to (28)b as discussed for
attributive phrasal comparative in (Lev, 2005, sec. 6.5).

(27) More students attended the party than teachers attended the reception.

(28) a. John read more books than Mary read magazines. (comp. subdeletion)
b. John read more books than Mary read. (comparative deletion)
c. John read more books than Mary. (phrasal comparative)

Pollard (1990) reviews more cases, however he conflates those that have and those
that lack ellipsis phenomena. The interaction of ellipsis, gapping etc. with nominal
comparatives here – e.g. (29) – should be the same as their interaction with the other
comparative constructions.

(29) More consultants work at H-P than (consultants work) at PARC.

4 Adverbial Comparatives

Each of the major families of comparatives we’ve seen so far – gradable, non-gradable,
and quantitative – have adverbial versions:

(30) a. John ran faster than Mary / than Mary ran. (gradable)
b. John spoke differently than Mary / than Mary spoke. (non-gradable)
c. John danced more than Sue / than Sue danced. (quantitative)

In this section, we analyze such cases. In order to do that, we first need to discuss
the syntax-semantics interface of adverbs, and for that we need events semantics. We
import the treatment of events in glue semantics from (Fry, 1999a,b) into HPSG.

7

4.1 Events in Glue Semantics

A verb’s semantics, after all its arguments are combined with it, is a property
of events. For example, “John greeted Mary” describes the property of events:
λe.greet(e) ∧ past(e) ∧ agent(e, john) ∧ patient(e,mary). VP modifiers contribute
conjuncts to this property. The entire property is eventually closed off by an exis-
tential quantifier ∃e at the sentential level.

To account for that, we revise the semantics of verbs from GC(22):

(31) “greeted”:

cat

head [vform fin]

subj 〈np[nom]: 2 [per 3rd, num sing]〉
comp 〈np: 3 〉

sem-r [head-r 1 , eventp-r 4]

glue

〈
λxλyλv.greet(v) ∧ past(v) ∧ agent(e, x) ∧ patient(e, y) : 2

e → 3
e → 4

ep,

λZ.∃v.Z(v) : 4
ep → 1

t

〉

The difference here is that we introduce a new resource eventp-r, of type ep, and
use it in the semantics. ep stands for “event predicate”, and is effectively a shorthand
for the type ev → t, where ev is the type of events. The first item in glue is a bit
unusual compared to all we have seen so far, because while 2 e is associated with
x and 3 e with y, 4 ep is associated not with v but with the entire result λv.[. . .].
(We use v for the event variable rather than the conventional e so as not to cause
confusion with the type e).2

When this verb combines with its two arguments using Schemas 1 and 2, we get
the following glue:

(32) 〈john : 2
e,

mary : 3
e,

λxλyλv.greet(v) ∧ past(v) ∧ agent(e, x) ∧ patient(e, y) : 2
e → 3

e → 4
ep,

λZ.∃v.Z(v) : 4
ep → 1

t

〉

The first three statements combine to λv.[greet(v)∧ . . .∧patient(v, mary)] : 4 ep, and
this combines with the fourth statement to ∃v.[greet(v)∧ . . .∧patient(v,mary)] : 1 t.

4.2 Gradable Absolutive Adverbs

The separation of the existential closure from the event property in the glue of (31)
is necessary in order to be able to “stick in” between them things like VP modifiers

2There is a general issue in the syntax-semantics interface of glue semantics, whether to allow
semantic resources of such higher types, or whether to always spell out such types explicitly and only
use semantic resources of atomic types. For example, in the semantics of nouns and adjectives (see
e.g. GC(25) and GC(26)), we could use just one semantic resource, pred-r, of type et, which is a
shorthand for e → t, instead of the two resources var-r and restr-r of types e and t respectively. If
higher types are allowed, then after all the glue statements are collected, they may need to undergo
a step of conversion (to open up such shorthands) before they are combined in derivations, although
that depends on how the derivations are calculated. In any case, this issue is orthogonal to the main
points of this paper and (Lev, 2005).

8

and tense modifiers contributed by auxiliaries to non-finite verbs. However, negation,
modals, and quantifiers modify the head-r resource of type t.3 Here is an entry for
a gradable absolutive adverb:

(33) “quickly”

cat

[
head

adv

[
mod vp

[
sem-r [eventp-r 4]

]]]

sem-r [event-r 5 , val-r 6]

glue

〈
λv.quickly(v) : 5

ev → 6
d,

λzλGλPλv.P (v) ∧ abs(G(v), z) : 7
d → (5

ev → 6
d) → 4

ep → 4
ep

〉

context [sal-values {〈quickly, 8 : 7 〉}]

This entry is very similar to the entry for an absolutive attributive adjective in
GC(72), with the following differences: (a) Instead of having a measure function from
individuals to degrees (e → d), we have a function from events to degrees (ev → d)
– thus quickly returns the speed of events; (b) the last two items on the glue list
in GC(72) are combined here to one statement for simplicity; and (c) the degree (7

here, 6 in GC(72)) is taken from a salient context value here, rather than from the
comps list, because it can never be specified explicitly:

(34) * John ran 2mph fast/quickly.

This adverb may combine with a VP by the head-adjunct schema.4 The sentence
“John greeted Mary quickly” will have a glue consisting of (32) and the glue from
(33), and this yields (35), for some salient degree d.

(35) ∃v.[greet(v)∧past(v)∧agent(v, john)∧patient(v, mary)∧abs(quickly(v), d)])

4.3 Gradable Comparative Adverbs

It is easy to give an entry when there is a direct comparison to a degree:

(36) “faster” (as in: “John ran faster than 3mph”):

cat

head

adv

[
mod vp[sem-r|eventp-r 6]

]

comps 〈pp[than,pre-,comps〈np[degree+]: 4
d〉]〉

sem-r [event-r 7 , val-r 8]

glue

〈λv.fast(v) : 7
ev → 8

d,

λGλzλPλv.[P (v) ∧more(G(v), z)] :

(7
ev → 8

d) → 4
d → 6

ep → 6
ep

〉

This will produce the semantics: ∃v.ran(v)∧agent(v, john)∧more(fast(v), 3mph).
Now, suppose we have the following sentence:

3Thus, the correct semantics for “John didn’t run” is ¬∃v.ran(v) ∧ agent(v, john) and not when
the negation is within the existential. Similarly with modals and quantifiers.

4An unresolved question: How is an adverb allowed to appear both to the left and the right of
the VP? E.g.: “John quickly greeted Mary.”

9

(37) John ran faster than Mary ran.

The desired semantics is (38)a (which is logically-equivalent to (38)b).

(38) a. ∃v.[ran(v) ∧ agent(v, john)∧
more(fast(v), ιz.∃u.[ran(u) ∧ agent(u, mary) ∧ abs(fast(u), z)])]

b. ∃v.[ran(v) ∧ agent(v, john)∧
∃u.[ran(u) ∧ agent(u,mary)∧

more(fast(v), fast(u))]]

The entry for faster here should be along the lines of attributive comparative
deletion GC(74). It should expect on its extra list a sentence which is missing an
adverb phrase that describes a degree. For attributive comparative deletion GC(74)
we could easily say that a lexical extraction rule moves the AP argument of the
clause’s main verb (e.g. be) from the comp list to the slash. But here, since adverbs
are usually not required arguments and do not appear on a comp list, we need to
assume that we can have a phonologically-null feature structure standing for an empty
adverb, and acting similarly to a “trace” – notice that 3 is the local and is also on
the slash set:5

(39) A feature structure for a trace of an adverb:

local 3

cat

[
head

adv

[
mod vp

[
sem-r [eventp-r 1]

]]]

sem-r [eventp-r 2]

glue
〈
λQλPλv.P (v) ∧Q(v) : 2

ep → 1
ep → 1

ep
〉

nonlocal|inher|slash { 3 }

Now, this feature structure can combine with a verb just like a normal adverb,
and we get:

(40) “than Mary ran (adv)”

local

cat

head verb[fin]

marking than
subj 〈 〉

sem-r [head-r 4 , event-p 1]

glue

〈mary : 5
e,

λxλv.run(v) ∧ past(v) ∧ agent(v, x) : 5
e → 1

ep,

λZ.∃v.Z(v) : 1
ep → 4

t,

λQλPλv.P (v) ∧Q(v) : 2
ep → 1

ep → 1
ep

〉

nonlocal|inher|slash
{

3 s[sem-r|eventp-r 2]
}

Intuitively, if we combine the glue statements here, we get:
5Technically, to avoid such phonologically-null feature structures, we could have a rule that can

modify a verb by adding to its slash the local of the adverb feature structure.

10

(41) λQ.∃v.[run(v) ∧ past(v) ∧ agent(v,mary) ∧Q(v)] : 2 ep → 4 t

i.e. a property that, given a property Q of events, returns a truth value of whether
the event of Mary running has the property Q. And now, the adverb faster expects
such a structure on its extra list:

(42) “faster” (as in: “John ran faster than Mary ran”):

local

cat

[
head

adv

[
mod vp[sem-r|eventp-r 6]

]]

sem-r [event-r 7 , val-r 8]

glue

〈λv.fast(v) : 7
ev → 8

d,

λGλZλPλv.[P (v) ∧more(G(v), ιz.Z(λu.abs(G(u), z)))] :

(7
ev → 8

d) → (2
ep → 4

t) → 6
ep → 6

ep

〉

nl|inhr|extra

S

marking than,

nl|inhr|slsh
{
advp:[sem-r|eventp-r 2],...

}

: 4

So after combining (42) with (40), we have:

(43) Z = λQ.∃v.[run(v) ∧ past(v) ∧ agent(v, mary) ∧Q(v)] : 2
ep → 4

t

Z is applied on:
Q = λu.abs(fast(u), z) : 2

ep

Therefore we get as the second argument to more in (42):
ιz.∃v.[run(v) ∧ past(v) ∧ agent(v, mary) ∧ abs(fast(v), z)],
i.e. the z such that Mary ran z-fast.

The subdeletion case, as in (44)a, will be analyzed along the same lines, in parallel
to the adjective case GC(76). The analysis of the phrasal case, as in (44)b, has the
same issues that were raised in (Lev, 2005, sec. 6.5) regarding the phrasal case for
gradable adjectives, and the solution should be along the same lines.

(44) a. Mary spoke more enthusiastically than John spoke angrily.
b. John ran faster than Mary.

4.4 Non-gradable Comparative Adverbs

differently, similarly, etc. [TBD]

4.5 Quantitative Comparative Adverbs

[TBD]

(45) John danced more than Sue walked.

Need a more sophisticated semantics that quantifies over events:

(46) more(|λv.danced(v) ∧ agent(v, john)|, |λv.walked(v) ∧ agent(v, mary)|)

11

This is very interesting, because more here must prevent the existential closure in
both the main sentence and the complement clause from connecting with the event
predicates. It has to absorb them and “discard” them. Moreover, as a quantifier,
it may have scope ambiguity. Happily, all this is easily expressible in the syntax-
semantics framework we have here.

References

Alrenga, Peter. 2005. Comparisons of similarity and difference. Handout at TREND,
Stanford University, April 16.

Fry, John. 1999a. Resource-logical event semantics for LFG. Talk given at the LFG’99
conference.

Fry, John. 1999b. Resource-logical event semantics for LFG. Unpublished draft.
Heim, Irene. 1985. Note on comparatives and related matters. Ms., University of Texas,

Austin.
Lev, Iddo. 2005. Gradable comparatives: Syntax and syntax-semantics interface. Paper

for Ling221B, Stanford University.
Nunberg, Geoffrey. 1984. Individuation in context. In Proceedings of WCCFL 3 , 203–217.
Pollard, Carl. 1990. Notes on the syntax and semantics of comparatives. Unpublished ms.
Pollard, Carl, and Ivan Sag. 1994. Head-driven phrase structure grammar . Studies in

Contemporary Linguistics. The University of Chicago Press.

12

