
Some Steps in Formalizing Events

Paper for Ling233, “Tense and Aspect”, Autumn 2005

Iddo Lev

October 2, 2006

1 Introduction

(Moens and Steedman, 1988) discuss various ways in which the aspectual class of
an event may shift if the event is modified by various operators and adjuncts. How-
ever, they do not provide a formalization of their framework in terms of semantic
representations. In this paper, I propose some steps towards such a formalization.
I show that the representations need to be rich enough to capture the various cases
that appear in language, and that meaning postulates and general world knowledge
tie these representations together. I then discuss the issue of a gradual process and
propose that it requires a further distinction in the representations, improving upon
the proposals given in the Zucchi-Parsons debate.

2 Background: Aspectual Classes and Shifts

2.1 Aspectual Classes

(Moens and Steedman, 1988) give the following classification of eventualities into
“aspectual classes”, a revision of (Vendler, 1967)’s classification. Process is Vendler’s
activity, culminated process corresponds to his accomplishment, while his achieve-
ment is divided here into culmination and point, both atomic events, but they differ
w.r.t. whether they result in a meaningful consequence state: reaching the top of a
mountain results in the state of being at the top, while there is no standard state
that hiccuping leads to.

(1)
Events States

atomic extended
+conseq culmination culminated

process
−conseq point process

Each combination of a predicate and its set of arguments is lexically specified
for a certain aspectual class. The classification depends on the ontological type of
the arguments as well as on some of their grammatical features. Thus, the basic
classification says that intransitive eat is a process, eat + an apple is a culminated

1



process, while eat apples is again a process (there is no specific amount of apples
such that eating it can be considered as culminating the event). Other examples are:
know + NP is a state, arrive at NP is an achievement, and jump is a point.

2.2 Aspectual Shifts

In general, every event belongs to one of the aspectual classes. An event’s class
can be coerced to another class if there is a clash between the event’s class and
the requirements of operators modifying the event. Grammatical operators that
potentially cause a shift in an event’s aspectual class include:

• present vs. non-present tense

• progressive vs. non-progressive

• perfect vs. non-perfect

In addition, various VP-modifiers may cause such shifts. I will briefly review here a
few examples from (Moens and Steedman, 1988), and I will later return to them in
more detail.

The basic class of hiccup is point, but the progressive in (2) requires a process.

(2) Sandra was hiccupping.

This clash results in a coercion of the point event to a process event. There are
different kinds of possible coercions (as we shall see in section 4), and here the most
likely one is iteration, which yields the process of Sandra repeatedly hiccuped. Moens
& Steedman give the following informal representation:

(3) (progressive (process (iteration (point (Sandra hiccup)))))

To run a mile is a culminated process, but again, the progressive in (4) requires a
process. This time, the clash is resolved by stripping the culmination and shifting to
the preparatory process part of running. That the culmination point need not occur
can be seen in the second part of (4).

(4) Roger was running a mile, but he gave up after two laps.

To reach the top is a culmination. The clash with the progressive in (5) is resolved
by first shifting the culmination to a culminated process and then stripping the
culmination. As (Rothstein, 2004, p.49) says, the added preparatory process is not
determined lexically but by contextual factors and general world knowledge (there is
more than one way to reach the top).

(5) Harry was reaching the top, when he slipped and fell to the bottom.

Aspectual shifts can be cascaded, as in:

(6) It took John two days to play the Minute Waltz in less than sixty seconds for more
than an hour.

2



According to Moens & Steedman (p.21), play the Minute Waltz in (2) is a process,
while the in-adverbial requires a culminated process. So the process needs to be
coerced to a culminated process by adding the completion of the playing to the
event. However, I think that play the Minute Waltz is a culminated process, just
like eat a cake or run a mile, so no coercion is needed here. Moens & Steedman do
not explain this point, but it is important to note that the resulting event, play the
Minute Waltz in less than 60 seconds, is no longer a culminated process, as can be
seen by the fact that it cannot be easily modified further by a for -adverbial (contrast
this with a simple culminated process: Mary ate a cake / was eating a cake for three
minutes). It is in fact a point.

The next modifier is for more than an hour, which requires a process as its input.
So the point event needs to be shifted to a process by means of iteration, just as
for hiccuping above. The resulting process is: repeatedly playing the entire waltz in
less than 60 seconds each time. The result play the Minute Waltz in less than sixty
seconds for more than an hour is again not a culminated process (since it cannot be
readily modified by a for adverbial) but a point.

Finally, the modifier it took . . . two days needs to modify a culminated process.
This is achieved by first shifting the point to a culmination, i.e. the achievement of
becoming able to do the difficult feat of repeatedly playing the Minute Waltz in less
than sixty seconds for more than an hour.

The representations given by Moens & Steedment (e.g. (3)) are informal because
the definitions of the operators in terms of input, output, and conditions of use were
not precisely given. In particular, it seems that point and process are not really
operators in (3) but are given in the representations just to indicate the aspectual
class at their point of use. My aim below is to work out some of these definitions and
conditions in more detail.

3 Representation of Events

3.1 Obstacle

3.1.1 Accessing Events

What event representations should we use so that they would allow us to define what
the operators and VP-modifiers do on these representations?

As an example, consider the progressive operator PROG. What this operator
adds to the description of an event depends on the aspectual class of the event.
Thus, “John was eating the cake” differs from “John ate the cake” in that the former
has a strong implication for an incomplete event. However, in “John was hiccuping”,
the progressive adds an iteration. What kind of syntax-semantics interface would
allow us to define this behavior of PROG?

An obstacle arises if we try to use conventional tools. If we use the representa-
tions as given in (7) and (8), then how can we define the PROG operator for the
progressive?

(7) a. John eat the cake
b. λe.pred(e) = cake ∧ agent(e) = john ∧ theme(e) = the(cake)

3



(8) a. John hiccup
b. λe.pred(e) = hiccup ∧ experiencer(e) = john

On (7), PROG would need to apply (9)a to get (9)b, whereas on (8), PROG
would need to apply (10)a to get (10)b (iteration(P ) denotes the type of event that
consists of a sequence of several event instances in the denotation of P ).

(9) a. λPλe.P (e) ∧ complete(e) = −
b. λe.pred(e) = cake ∧ agent(e) = john ∧ theme(e) = the(cake) ∧ complete(e) = −

(10) a. λP.iteration(P )
b. iteration(λe.pred(e) = hiccup ∧ experiencer(e) = john)

The problem here is that in order to know which of (9)a or (10)a to apply, PROG
needs access to the aspectual class of the events described by (7)b and (8)b. We
could add a description of the aspectual class to the events, e.g. aspclass(e) =
accomplishment, but how could PROG access that? As far as PROG is concerned,
its input property is a “black box” that PROG cannot look into. Should PROG
apply its input property on some dummy variable e′ just to see if the result entails
aspclass(e′) = process or aspclass(e′) = point etc.? This is very inconvenient. What
we really want is for PROG to get as its input a structured object that has all the
information it needs readily available.

There are two further complications. To determine the aspectual class of a basic
predication, an operator needs access not only to the predicate and its arguments
but also to the arguments’ types and grammatical features. The first information is
“buried” and inaccessible in any argument that comes from a quantified NP,1 and the
grammatical information is not even available in the semantic representation. The
second complication is explained next.

3.1.2 Complex Events

Simple events can be described by a constellation of role-values standing in one
relation over a certain interval of time. But we need to consider complex occurrences
as well.

One kind of complex occurrence is brought about by coordinated events:

(11) a. For five minutes, John hugged Mary and Mary kissed John.
b. John hugged Mary and Mary kissed John. It lasted five minutes.

What happened for five minutes was not just the hugging or the kissing separately,
but the complex occurrence, to which it is referring in (11)b.

Another kind of complex occurrence is brought about by quantifying over entities
that participate in some role in the predicate:

(12) a. Every man gave a present to the teacher.
b. It happened yesterday.

1This will become more clear in section 4.1.

4



What does it refer to? Not to any particular giving of a present to the teacher by
one man, but to the entire occurrence of all the givings.

A third kind of complex occurrence comes about when an event is repeated:

(13) John was hiccupping for 10 minutes.

The following representation is not appropriate for this sentence:

(14) ∃e.hiccup(e) ∧ experiencer(e) = john ∧ length(time(e)) = 10minutes

This says that John made one hiccup, and this event lasted 10 minutes. But in fact,
(13) says that John was repeatedly hiccupping and that occurrence lasted 10 minutes.

The obstacle that this poses to the definition of operators that modify events is
that it is now even less clear how they would determine the event’s aspectual class
by using standard tools. For example, if we were to represent (12)a as:

(15) every(man, λx.a(present, λy.∃e.give(e)∧agent(e, x)∧theme(e, y)∧recipient(e, the(teacher))))

then how could a modifier such as in less than 30 seconds be able to determine
whether the aspectual class of (15) is a culminated process?

3.2 A Solution

To overcome these obstacles, I propose to represent events in the syntax-semantics
interface by using structured objects of two kinds. One kind will be called event
description (ed) and the other base event description (bd). But first, a short interlude
about time representation.

3.2.1 Time Points and Intervals

Our domain includes time points and intervals, where an interval is a contiguous set
of time points. We use intuitive relations between them, such as:

• t ∈ I is true iff time point t is included in time interval I.

• I1 < I2 is true iff all time points in I1 are strictly before all time points of I2.

• during(I1, I2) is true iff time interval I1 is included in time interval I2.

• meets(I1, I2) is true iff the latest time point of I1 is the same as the earliest time point
of I2.

For other relations, see e.g. (Allen, 1991).

3.2.2 Event Descriptions

An event description is a structured object with the fields: base, time, complete,
and aspclass. The first field can only take as its value a base event description (defined
below). The second field takes a time interval (or point), the third field takes + or
−, and the fourth field takes one of the five names of the aspectual classes. What
an event description represents is that the base event occurred over the interval of
time, and was completed or not depending on the value of the completed field. An

5



event description may have further adjunct thematic roles such as location (whereas
argument thematic roles appear inside a base event description below).

A base event description comes in different sub kinds:

1. Simple (s): This consists of a pred field with the name of a basic predicate, and
then one field per thematic role that is relevant to pred, such as agent, theme,
etc. Example: [pred : eat, agent : john, theme : the(cake)].

2. Proposition (p): A basic proposition has the form ∃e.e ∈ T , where T is of type
ed. This says that an event e exists, which can be described as an instance of
event-description T .
Example: ∃e.e ∈ [base : [pred : jump, agent : john], complete : +, aspclass : point].
This says that there is a complete event where John jumps, but gives no infor-
mation about the time. Information on the time can be added by e.g.:
∃I∃e.e ∈ [base : [pred : jump, agent : john], complete : +, time : I] ∧ (I < now)
or simply:
∃e.e ∈ [base : [pred : jump, agent : john], complete : +] ∧ (time(e) < now)

3. Quantified: This is a subtype of proposition. The form of this basic event de-
scription is Q(R, S), where Q is a quantifier name, and R, S are properties of
type e → p (individuals to propositions). For example, (part of) the represen-
tation for “Every man arrived” is:
every(λx.kind(x) = man,

λy.∃e.e ∈ [base : [pred : arrive, agent : y], complete : +] ∧ (time(e) < now))

4. Iteration: This has the form iteration(T ), where T is of type ed. For example:
iteration([base : [pred : hiccup, experiencer : john], complete : +, aspclass : point]).

5. Coordination: Two or more event descriptions can be coordinated, and the
same goes for basic event descriptions. For example:
[pred : hug, agent : john, patient : mary]∧[pred : kiss, agent : mary, patient : john]
A related but distinct operator is ⊃⊂: the notation T1⊃⊂T2, where T1 and T2

are event descriptions, denotes a complex event description, where the event
consists of a T1 occurring, and then a T2 occurring immediately after it.

3.3 Shorthand and Inference

The feature-structure notation introduced above can be seen as a shorthand for
spelling out in a big conjunction the values of all the features:

(16) e ∈ [base : T, complete : c, aspclass : a] ⇔
base(e) = T ∧ complete(e) = c ∧ aspclass(e) = a

base(e) = [pred : p, r1 : v1, . . . rn : vn] ⇔ pred(e) = p∧ r1(e) = v1 ∧ . . .∧ rn(e) = vn

Thus, just as with the standard event representation, we automatically get inferences
which drop argument and adjunct information:

6



(17) John buttered the toast with the knife.
∃e.e ∈ [base : [pred : butter, agent : john, theme : the(toast),

instrument : the(knife)],
complete = +] ∧ time(e) < now

implies: John buttered the toast.
⇒ ∃e.e ∈ [base : [pred : butter, agent : john, theme : the(toast)], complete = +]

All the representations introduces above denote structured objects rather than
functions, propositions, or truth values. Thus, the operators can traverse these struc-
tures and have full access to all the information in them. These structures correspond
to what (Krifka, 1998, p.198) means by conceptual structures:

[We can] assume that expressions are interpreted by elements of concep-
tual structures that in turn are related to real entities by some extra-
linguistic matching. [The structures are] attempts to capture certain
properties of the way how we see the world, not as attempts to describe
the world how it is.

4 Analysis of Cases

Let us see how this apparatus can be put to use. It is not a-priori clear in which order
the quantifiers, PROG operator, and VP-modifiers should apply. Let us examine 18
cases that arise from considering three parameters: progressive vs. non-progressive;
no modifiers vs. in vs. for adverbials; and aspectual class (process, accomplishment,
achievement). Actually, we will consider an additional extra case of progressive +
no-modifiers + point.

Note: In the examples below, such as (18), the classification to the three classes
– process, accomplishment, and achievement – refers to the basic event (predicate +
arguments), and not to the whole sentence.

4.1 Progressive, No Modifiers

(18) process: John was running.
accomplishment: John was eating two cakes.
achievement: John was reaching the top.

In all of them, the (preparatory) process occurred.
For process: incomplete, for others: strictly speaking unknown, with implication of
incomplete.

4.1.1 Process

The initial representation for the first sentence is:

(19) ∃e.e ∈ PROG([base : [pred : run, agent : john], complete : −, aspclass : process])
∧ time(e) < now

Because the input to PROG here is a process, PROG needs to do nothing:

7



(20) If Q = [base : T, complete : −, aspclass : process] then PROG(Q) = Q.

and the result is the same as (19) except with PROG dropped. The event descrip-
tion itself is obtained from the syntactic structure of the sentence by combining the
predicate run with its arguments. The values of the complete and aspclass fields
is determined by consulting a table, as will be explained in section 4.1.3. The part
I < now is contributed by the past tense operator. The prefix ‘∃e.e ∈’ is a stan-
dard “wrapping” that is always added to a sentence after everything else has been
calculated.

4.1.2 Achievement

The initial representation for the achievement sentence is:

(21) ∃e.e ∈ PROG([base : [pred : reach, agent : john, target : the(top)],
complete = +, aspclass : achvmnt]),

∧ time(e) < now

The PROG operator requires its input to be an event description with complete : −
and aspclass : process. If this condition is met, as it was for (19), PROG does
nothing. If the condition is not met, PROG creates a new process event description
whose details depend on the aspectual class of the input and on contextual factors.
In the case of an achievement input, as here, one option is for PROG to create a
new event description of the preparatory process of the achievement. This is done by
using the PreP operator. So (21) expands into:

(22) ∃e.e ∈ PreP ([base : [pred : reach, agent : john, target : the(top)],
complete = +, aspclass : achvmnt]),

∧ time(e) < now

The PreP operator takes its input event description and returns a new event de-
scription of an incomplete process:

(23) PreP ([base : T, complete : +, aspclass : achvmnt]) =
[base : T ′, complete : −, aspclass : process]

where T ′ depends on the content of T and on contextual factors.

The new event description T ′ should include a condition on the length of the event’s
time interval so that it is contextually close enough to the achievement point (“John
was reaching the top” means he was about to reach the top, not just that he did
some climbing towards the top). The operator PreP can easily access the content
of T thanks to the fact that all the values here are structured objects rather than
properties whose internals cannot be accessed directly. For example, PreP can access
the base.pred value of its input. The final representation is then:

(24) ∃e.e ∈ [base : T ′, complete = −, aspclass : process] ∧ time(e) < now
where T ′ is a preparatory process of:
[base : [pred : reach, agent : john, target : the(top)],
complete = +, aspclass : achvmnt]

8



4.1.3 Accomplishment

What happens with the accomplishment sentence is slightly different. The initial
representation is

(25) ∃e.e ∈ [base : two(λy.cake(y),
λx.∃e′.e′ ∈ PROG([base : [pred : eat, agent : john, target : x],

complete : +, aspclass : acmplsh]))]
∧ time(e) < now

This claims the existence of an event e which is described by a quantification state-
ment. Again, as for the achievement, PROG notices that its input it not a process,
and so one option is for it to call PreP . Now that operator is defined differently for
accomplishment than for achievement:

(26) PreP ([base : T, complete : +, aspclass : acmplshmnt]) =
[base : T, complete : −, aspclass : process]

Since an accomplishment inherently has a process as part of it, the preparatory
process of an accomplishment is described by using the same predicate-argument
constellation but marking the event as incomplete (more on this in section 5). If we
apply (26) on the representation, we get:

(27) ∃e.e ∈ [base : two(λy.cake(y),
λx.∃e′.e′ ∈ [base : [pred : eat, agent : john, target : x],

complete : −, aspclass : process])]
∧ time(e) < now

Note that the inner event description has complete : −, but the outer event has no
information on completion. Thus, this says: there are two cakes and for each, John
was eating it and did not complete the eating, but we don’t know the completion
status of the entire complex event.

One question to explain a bit more is: Where does the information ‘aspclass :
acmplsh’ that appears in (25) come from? Determining this depends on the type of
the arguments, because if the object NP in the sentence were cake or cakes rather
than two cakes, the aspectual class would be a process. The problem is that the
object argument here is a variable x, which has no type or other information. This
is the issue that was mentioned at the end of section 3.1.1. The answer is that the
syntax-semantics interface has access to the entire syntactic structure, such as an F-
structure in LFG (Dalrymple, 2001). That structure has enough information about
the type of the arguments, which allows us to compute the aspectual class.

Just to illustrate this point a bit more concretely,2 if we use LFG as our syntactic
framework, we can specify the following rule to compute the aspectual class:

(28) If an f-structure G originates from a verb,
and the pred of G is p,
and G has grammatical functions f1, . . . , fn,
and these functions lead to the f-structures H1, . . . , Hn, respectively,
then the aspectual class of G is ASPTABLE(p, {f1 : H1, . . . , fn : Hn}).

2This paragraph is for illustration purposes only, and need not be taken as accurate.

9



ASPTABLE has a column for the basic predicate and one column for each grammati-
cal function. In each row, an empty column indicates the grammatical function must
not exist while a ‘ ’ mark indicates that the grammatical function must exist but we
do not care what it contains:

pred subj obj . . . aspect class example
love state John loves Mary.
jump point John jumped.
arrive achievement John arrived.
reach num=sg achievement John reached the top.
eat process John ate.
eat num=sg accomplishment John ate a cake.
eat spec=generic process John ate cakes.
eat count=uncountable process John ate cake.

Now that we know how to compute the aspectual class, that information need not
be placed in the f-structure itself, as it may be irrelevant for syntax. Instead, it can
be placed only in the semantic structure that is projected off from the f-structure,
e.g. via Glue Semantics (see (Dalrymple, 2001)).

4.1.4 Point

(29) point: John was jumping.

The event description of the basic predication is

(30) [base : [pred : jump, agent : john], complete : +, aspclass : point]

Since PROG requires a process, there is a clash. In the case of a point event, the
clash is resolved by iterating the point:

(31) PROG([base : T, complete : +, aspclass : point]) =
[base : iteration([base : T, complete : +, aspclass : point]),
complete : −, aspclass : process]

Thus we get:

(32) ∃e.e ∈ [base : iteration([base : [pred : jump, agent : john],
complete : +, aspclass : point]),

complete : −, aspclass : process] ∧ time(e) < now

This section was particularly long because we introduced a lot of machinery. The
analysis of the subsequent cases will therefore be much shorter.

From now on, to ease readability, we will omit field names if they can be uniquely
understood from the field value, e.g. [run, john] instead of [pred : run, agent : john].

4.2 Progressive, for two minutes

(33) process: John was running for two minutes.
accomplishment: John was eating two cakes for two minutes.
achievement: John was reaching the top for two minutes.

10



(Preparatory) process occurred for two minutes.
completion = strictly speaking unknown, with implication of incomplete.

The phrase for two minutes expects an event description T that has complete : −,
and it outputs: ∃e.e ∈ T ∧ length(time(T )) = 2minutes.

Since a process event description has complete : −, it can be easily modified by
for two minutes:

(34) ∃e.e ∈ [base : [pred : run, agent : john], complete : −, aspclass : process]
∧ length(time(e)) = 2minutes ∧ time(e) < now

For the achievement case: because for two minutes expects a process event de-
scription, it can combine with an achievement only after the achievement is shifted
to its preparatory process. That’s why it can modify only the outer event of (24),
and not the inner T ′ there. We get:

(35) ∃e.e ∈ [base : T ′, complete = −, aspclass : process]),
∧ length(time(w)) = 2minutes ∧ time(e) < now

where T ′ is a preparatory process of:
[base : [pred : reach, agent : john, target : the(top)],
complete = +, aspclass : achvmnt]

As for the accomplishment case, there are two places in (27) where for two minutes
can apply, corresponding to the scope ambiguity between it and two cakes. If it applies
in the inner event, we get that for each of the two cakes, John was eating it for two
minutes, whereas if it applies in the outer event, we get that for two minutes, John
was eating the two cakes.

4.3 Non-Progressive, No Modifiers

(36) process: John swam.
accomplishment: John ate a cake.
achievement: John reached the top.

(Preparatory) process occurred.
For process, complete = −, unless there is some contextually salient amount of
running that got completed, in which case this is actually an accomplishment.
For achievement, complete = +:

(37) # John reached the top, but he didn’t go all the way to the top.

For accomplishment, this is sometimes less strong:

(38) a. # John ran a mile yesterday, but he didn’t run the whole mile.
b. (?) John ate a cake yesterday, but he didn’t eat the whole cake.
c. John read a book yesterday, but he didn’t read the whole book.

Also, sometimes an accomplishment that prefers complete = + when it is not followed
by a VP-modifier changes its preference to complete = − when it is modified by a
for -adverbial:

11



(39) a. Dafna drew a circle. (preference: complete)
b. Dafna drew a circle for one minute. (preference: incomplete)

I suggest that, depending on the particular predicate and argument types, some
accomplishments will have complete = + and some will have this only as a defeasible
fact, prefixed with a ð, i.e. ð(complete(e) = +). The important thing about the logic
of ð is the following pair of inference rules:

(40) Γ ` ðϕ ; Γ 6` ¬ϕ ⇒ Γ ` ϕ
Γ ` ðϕ ; Γ ` ¬ϕ ⇒ Γ 6` ϕ

In other words, if we can defeasibly conclude ϕ from Γ, and we cannot conclude ¬ϕ,
then we can conclude ϕ ; but if we can conclude ¬ϕ, then this defeats ðϕ, and we
cannot conclude ϕ.

As a possible benefit, this can simplify the analysis of an accomplishment with
a progressive in (25)-(27) as follows. The PROG operator can simply assert that
complete : −. For a process, this is consistent with the given event description.
For an achievement or a point, this contradicts their complete : + and so PreP
or iteration are triggered. But for an accomplishment that has ð(complete : +),
the PROG simply asserts complete : − and overrides this defeasible fact, effectively
shifting the accomplishment to its preparatory process without resorting to PreP .

Note that we get the desired inferences for the so-called “imperfective paradox”
(Dowty, 1979; Rothstein, 2004, p.38):

(41) a. John was swimming. ⇒ John swam.
b. John was building a house. 6⇒ John built a house.

The first two sentences are both processes marked with complete : −. In contrast,
the third sentence has complete : − (section 4.1), whereas the fourth accomplishment
sentence has a (defeasible) complete : + and so is not entailed by the third sentence.
This is a simple matter of event description, and there is no need to resort to Dowty’s
inertia worlds or an intensional analysis (more on this in section 5).

4.4 Non-Progressive, in two minutes

(42) process: John swam in two minutes.
accomplishment: John ate the cake in two minutes.
achievement: John reached the top in two minutes.

The modifier in two minutes requires an accomplishment event T , and it outputs
∃e.e ∈ T ∧ complete(e) = + ∧ length(time(t)) = 2minutes. So this asserts that an event
e of type T occurred and it lasted for 2 minutes. It also asserts that it was complete,
and so it changes the status of complete : + to definite if this fact is defeasible inside
T . For the accomplishment example here we get:

(43) ∃e.e ∈ [base : [eat, john, the(cake)], complete : +, aspclass : acmplsh]
∧ length(time(e)) = 2minutes ∧ time(e) < now

The in two minutes modifier creates a clash if the event description is a process
or an achievement: the first lacks a culmination while the second lacks a prepara-
tory process. We have already seen how an achievement event can be shifted to its

12



preparatory process by using the PreP operator, but here we need both the prepara-
tory process and the culmination. So in the case of an achievement, we have:3

(44) If Q = [base : T, complete : +, aspclass : achvmnt] then
(in two minutes(Q)) =
∃e.e ∈ [base : (PreP (Q)⊃⊂Q), complete : +, aspclass : acmplsh]
∧ length(time(e)) = 2minutes)

For a process, we have two options. One option is to focus on the end of the
process and to add a culmination. The definition of the shift would be dual to
(44), except we would use the CulP operator which takes a process event and adds a
culmination point. Just like the PreP operator, it depends on the particular predicate
and arguments of the event as well as contextual factors. CulP could actually make
the shift by claiming there is a hidden theme argument for the process that measures
it, e.g. “John ran in two hours” could mean “John ran a mile in two hours”.

The second option is to focus on the beginning of the process as the point of
interest, and consider it a culmination of some preparatory process. So in this case,
we would use:

(45) If Q = [base : T, complete : −, aspclass : process] then one option is:
Let Q′ = [base : [pred : start, theme : Q], complete : +, aspclass : point] and
(in two minutes(Q)) =
∃e.e ∈ [base : (PreP (Q′)⊃⊂Q′), complete : +, aspclass : acmplsh]
∧ length(time(e)) = 2minutes)

This second option is highly unlikely for the accomplishment and achievement
cases (this would mean: “In two minutes, John started eating the cake, or started
doing the process that would lead him to reach the top”), simply because it would
require too many coercions that go against the simplest, strongest, and most natural
interpretation.

4.5 Progressive, in two minutes

(46) process: John was running in two minutes.
accomplishment: John was eating a cake in two minutes.
achievement: John was reaching the top in two minutes.

This is unclear because there is a clash between the adverbial that implies comple-
tion and the progressive that implies an ongoing process. So this requires coercion.
Consider:

(47) John was playing the Minute Waltz in two minutes.

There are two orders in which PROG and in two minutes could be applied:

(48) a. (in two minutes (progressive (John play the Minute Waltz))))
b. (progressive (in two minutes (John play the Minute Waltz))))

3The operator ⊃⊂ was defined in section 3.2.2.

13



In (48)a, the progressive shifts the accomplishment of playing the Minute Waltz
to a process by stripping the culmination. This process is the input of in two minutes.
As we saw above, this could invoke either a coercion to the preparatory process of
starting the process, i.e. (49)a, or adding a culmination, i.e. (49)b. Because the
second option could be expressed much more simply by just saying (49)b, we get
that (49)a is a more likely interpretation of (47) than (49)b is.

(49) a. It took John two minutes to start playing the Minute Waltz.
b. John played the Minute Waltz in two minutes.

There are also two options for what (48)b could mean. They depend on what we
do with the event E1=“John play the Minute Waltz in two minutes” formalized as:

(50) ∃e.e ∈ [base : [eat, john, the(cake)], complete : +, aspclass : acmplsh]
∧ length(time(e)) = 2minutes

One option is to consider this event as a point by putting it inside:

(51) [base : E1, complete : +, aspclass : point]

and to iterate it, i.e. apply (31) on (51). So the sentence would mean that John
repeatedly performed the feat of playing the Minute Waltz in two minutes each time.
Another option is to consider E1 as an achievement by putting it inside:

(52) [base : [pred : become-possible, theme : E1], complete : +, aspclass : achvmnt]

and then apply PreP on (52) to get its preparatory process – what John had to do
in order to be able to perform the feat of playing the Minute Waltz in two minutes.
But because (52) is more complicated than (51), this second option is less likely as
an interpretation for (47). Or another explanation is that E1 includes an existential
quantifier over an event, and PreP does not like to get such a thing in its input
because when shifting to a preparatory process, the claim of existence of the culmi-
nation event is actually withdrawn. This was not a problem in (22) or (44) because
there, PreP got a pure event description (which does not involve an existential claim)
as its input.

The order ambiguity between the progressive and the VP-modifier suggests that
this ambiguity also exists for the cases with for two minutes discussed in section 4.2.
Thus, John was playing the Minute Waltz for two minutes may mean he was in the
process of playing it once and did not finish:
(for two Minutes (progressive (John play Minute Waltz incomplete)))
or he was in the process of repeatedly playing the Waltz, each time for two Minutes:
(progressive (iteration (point (for two Minutes (John play Minute Waltz)))))
But again, the second option is more complex and so is less likely.

4.6 Non-Progressive, for two minutes

(53) process: John swam for two minutes.
accomplishment: John ate a cake for two minutes.
achievement: John reached the top for two minutes.

14



For process, this usually means the same as the progressive.4

For achievement, this is unclear, because of the clash between complete = + of
the achievement and complete = − of the VP-modifier. A possible way to understand
it is by adding iteration of the “John reach the top” event, which is then modified
by the VP-modifier – this is a little similar to the first option that was discussed for
(48)b above.

For accomplishment, there is dispute in the literature whether this combination
is possible. (De Swart, 1998) puts a ‘#’ before (54)b, saying that it cannot have the
same meaning as (54)a, only an iterative meaning.

(54) a. Eve was drawing a circle for three hours.
b. Eve drew a circle for three hours.

But I think she confused herself because of the very long duration of three hours
which is unlikely for drawing one circle. Indeed, (Zucchi, 1998) accepts “John baked
the cake for five minutes” and (Rothstein, 2004, p.40) accepts “Neta painted a picture
for an hour”. Also, many examples can be found on the web, such as:

(55) You wouldn’t believe it! It was so nice outside yesterday, I just sat on the patio and
read a book for three hours!! 5

In such cases, Rothstein says that there is no implication the event was completed.
Since we took care in section 4.3 to make the fact ‘complete : +’ defeasible for an
accomplishment, the for-adverbial is free to override this fact with complete : −, and
no coercion is required.

4.7 Comparison to (De Swart, 1998)

(De Swart, 1998) also presents a formalization of aspectual classes and shifts. How-
ever, in contrast to the DRS representations that she uses, my representations dis-
tinguish between event descriptions and claims of event existence. In particular,
embedded events, for example the input to the PROG and PreP operators, are usu-
ally descriptions and do not have an event variable. This is an advantage over her
representation because we do not want to claim the existence of the embedded event
in these cases. The only way that she can apply her operators is on an event variable,
and that variable must be existentially quantified.

Also, the definition that de Swart gives for her PROG and aspectual shift op-
erators do nothing more than claim that the aspectual class of the event is shifted.
In contrast, I spelled out the details of what these operators do (in (20), (21)-(22),
(26), (31)), and in particular, the more complex event descriptions that they wrap
around their input events. This further supports some predictions about which pos-
sible readings are more or less likely than others based on the complexity of coercion,
(see e.g. section 4.5), an issue which she does not discuss.

4(De Swart, 1998, p.356) says that “Andrew was swimming for three hours” does not entail
“Andrew swam for three hours”, but I disagree.

5http://www.dallasnews.com/sharedcontent/dws/fea/breakroom/columnists/mwixon/stories/
102105brhumorme.111f9d917.html

15



5 Processes that Modify an Object

5.1 Background

Consider the following quote from (Zucchi, 1999):

Parsons’s analysis of the progressive runs into another problem. Consider sen-
tence [(56)] and Parsons’s translation [(57)]:

(56) Mary is building a house.

(57) ∃e∃I∃t.[I = now ∧ t ∈ I ∧ building(e) ∧Agent(e,Mary) ∧
∃e.[house(x) ∧ Theme(e, x)] ∧Hold(e, t)]

(58) ∃x.house(x)

If [(57)] is true, [(58)] must be true. Thus, by Parsons’s analysis, if Mary is
building a house, there is a house. But suppose that so far she only built the
foundations. Then, she is building a house, but there is no house yet.

Zucchi goes on to quote Parsons: “We should stick to the prediction of the the-
ory: if Mary is building a house, then there is a house. If the building process is
interrupted, the house exists, but is unfinished.” The same goes for the existence of
a circle in “John is drawing a circle” even if he only drew an arc.

Since Zucchi is unsatisfied with this analysis, he proposes instead an intensional
analysis, where it is only the intension of a house that stands in the role of theme of
the building event. Only if the event culminates then an extra “building principle”
says that the house actually exists.

I think the problem with this discussion is that Zucchi and Parsons are considering
only binary predicates. For Parsons, the house exists throughout the event. For
Zucchi, only after the event’s culmination (if the event indeed culminates). I think
neither view is satisfactory, and what we need to allow is non-binary degrees of
truth in the interval [0, 1]. With this, the problem disappears (or at least very much
reduced): If John was building a house or drawing a circle for a little while, but then
stopped before finishing, then indeed something came into existence which we would
be willing to describe to some extent, though not totally, as a house or a circle. In
this section I aim to formalize this intuition for creation and destruction verbs.

5.2 Low-Level Representation

Let us say that a time-space function is a function from time points to (not necessarily
contiguous) space regions. We can use them in our representation of individuals in
order to handle successfully creation, destruction, and other change events.

It is tempting to take the denotation of “John” to be a time-space function john
such that for all time points t, john(t) is the region of space that John occupies. If
John does not exist at t then john(t) is the empty region ø. And it is tempting to
take the denotation of “chair” to be a predicate chair such that for all time-space
functions f , chair(f) holds iff for all time points t such that f(t) 6= ø, we would be
willing to describe the space region f(t) as (being occupied by) a chair. (We may

16



furthermore require f to be smooth, i.e. if t and t′ are close to each other then so are
f(t) and f(t′)).

But this does not capture well the change that individuals and objects undergo.
If a house is being constructed, at what point would we be willing to describe the
space it occupies as holding a house? Surely if the house is finished we would be
willing to do so, but what about one hour before it is completely assembled, and one
of its parts is disconnected from it and occupies a space region one meter away from
it? It would be misleading to say that those regions are completely not a house.

First, let us reify kinds as elements in our domain. Thus our domain will includes
the kinds Chair, House, etc. We will also treat individual people as (singleton) kinds,
e.g. John. We then use the function holding which takes a space region, a time point,
and a kind, and returns a number between 0 and 1 that designates to what degree
we would be willing to describe the space region at that time as being occupied by
an instance of that kind. For example, if s is the region of space that John occupies
at a certain moment t then holding(s, t, John) = 1. If s is the region of space that is
occupied by an unfinished house at time t then 0 < holding(s, t,House) < 1.

(In this paper, I will not discuss objects that do not have a physical manifestation,
such as kinds that have no instances in the real world (e.g. unicorns), or abstract
concepts such as love. Instances of the former can still be said to occupy a region of
some imaginary space.)

We define the following for convenience:

• true(K, f, I) ≡ ∀t ∈ I.[holding(f(t), t, K) = 1]
The time-space function f over the entire time interval I gives regions of space
that can be fully described as holding an instance of kind K.

• partial[↑](K, f, I) ≡
∀t1, t2 ∈ I.[t1 < t2 → holding(f(t1), t1,K) ≤ holding(f(t2), t2,K)]

The time-space function f over the time interval I returns a sequence of space
regions that hold an object of kind K that is gradually coming into existence.

• partial[↓](K, f, I) ≡
∀t1, t2 ∈ I.[t1 < t2 → holding(f(t1), t1,K) ≥ holding(f(t2), t2,K)]

Similar to the above but the object is gradually being destroyed.

An example of how this can be used:

(59) John was sitting on a chair yesterday.
∃I∃f1∃f2.[true(John, f1, I) ∧ true(Chair, f2, I) ∧ I < now ∧ during(I, yesterday)

∧ ∃e.e ∈ [base : [pred : sit, agent : f1], on : f2, time : I, complete : −]

(60) John was drawing a circle yesterday.
∃I∃f1∃f2.[true(John, f1, I)∧partial[↑](Circle, f2, I)∧I < now∧during(I, yesterday)

∧ ∃e.e ∈ [base : [pred : draw, agent : f1, theme : f2], time : I, complete : −]

(61) John was eating a cake yesterday.
∃I∃f1∃f2.[true(John, f1, I) ∧ partial[↓](Cake, f2, I) ∧ I < now ∧ during(I, yesterday)

∧ ∃e.e ∈ [base : [pred : draw, agent : f1, theme : f2], time : I, complete : −]

17



What (60) says is: there was a sequence of space regions over the interval I, call
it f2. This sequence of regions over time occupied (part of) a circle to a gradually
increasing degree. There is no guarantee that the circle fully came into existence.

In contrast, the representation of the sentence “John drew a circle yesterday” has
complete : + instead of complete : − in the description of the event to indicate is
was completed. We can conclude from this that a circle (fully) came into existence
after the event by using the following general postulate:

(62) For a creation predicate p,
partial[↑](K, f, I) ∧ ∃e.e ∈ [[p, theme : f ], I, +] → holding(f(max(I)),max(I), K)
For a destruction predicate p,
partial[↓](K, f, I) ∧ ∃e.e ∈ [[p, theme : f ], I, +] → f(max(I)) = ø

This says that if the theme of a creation (resp. destruction) event is represented by
a time-space function f of kind K, then at the end of the time interval of the event,
max(I), the space region of f at that time is occupied by an instance of K (resp. is
empty).

This solution allows us to block the derivation “John was drawing a circle” →
“John drew a circle” (i.e. completed drawing a circle) while at the same time allowing
the possibility that an object came into existence which we would be willing to
describe partially as a circle, or as a partial circle.

In this way, we do not need to resort to (Landman, 1992)’s or Zucchi’s intensional
analysis. “John is eating the cake” is true in virtue of there being, over an interval
of time I, a sequence f of space regions that occupy an object which we would be
willing less and less to describe as a cake (partial[↓](Cake, f, I) holds), and it stands
in the relation eat with John. Saying that such a sequence existed is much more
clear than Landman’s analysis that says there is a continuation of stages in possible
worlds that lead to John eating the whole cake, even if it turns out that in the real
world he did not. The former relies on facts that actually happened in the world
while the latter relies on the not well-defined notions of “natural continuation” and
“closest world”.

As a side note, we relativized events to time intervals while relativizing objects
to time-space functions. Should we do so for events as well? (Cooper, 1985) suggests
that we should. For example, an event of two dogs chasing each other in the gar-
den has a location that can be expressed using a time-space function, i.e. the exact
locations of the dogs as they go around, which is more specific than the location of
the garden. But then what is the location of the event “The astronomers saw the
star”?6 This is another case of an unclear ontological concept: does this event take
place in two non-contiguous regions of space (where the astronomers are located and
where the star is located) or in some “tunnel” between them as well? Therefore, I
localize events only to time and general space regions (e.g. “in the garden”) but not
time-space functions. The locations of the two dogs during the chasing event can be
inferred from the time-space functions of the dogs themselves, and there is no need
to get the event involved in this as well.

6This was pointed out to me by Stanley Peters.

18



5.3 Higher-Level Representation

Above we have completely reduced objects and individuals to the space they occupy
at each time point and to the degree to which we would be willing to describe those
spaces as being occupied with an object of a certain kind. This doesn’t immediately
mesh well with the kinds of representations we saw before, specifically john and cake
in (27) and (43).

The solution is to use a higher-level setup and to allow individuals back into our
conceptualization, but to equip them with additional properties:

• total-time(x) is the interval of time in which x can be said to exist to some
degree.

• creation-time(x) is the interval of time in which x can be said to come into
existence.

• fully-time(x) is the interval of time in which x can be said to fully exist.

• destruction-time(x) is the interval of time in which x can be said to come out
of existence.

• time-space(x) is that partial function f with domain total-time(x) such that
f(t) is the space region that x occupies at time t.

Furthermore, when we write cake(y), we do not mean that y is a full instance
of a cake throughout its lifetime. Instead, only during fully-time(y) we would be
completely willing to describe y as a cake, whereas during creation-time(y) and
destruction-time(y), we would be willing to describe time-space(y) as a cake being
created or destroyed. Thus we have the postulates:

(63) K(x) → true(K, time-space(x), fully-time(x))
K(x) → partial[↑](K, time-space(x), creation-time(x))
K(x) → partial[↓](K, time-space(x), destruction-time(x))

We also have the following postulates:

(64) total-time(x) = creation-time(x) + fully-time(x) + destruction-time(x)
meet(creation-time(x), fully-time(x))
meet(fully-time(x), destruction-time(x))
∀t ∈strict total-time(x).[time-space(x)(t) 6= ø]

The relation ∈strict means ∈ but not equal to the minimum or maximum point.
Above we explained why we should take John to be a kind. But we can also

re-introduce a constant john with the postulate:

(65) John(x) ↔ x = john

Now (59) becomes:

(66) ∃I.(I < now) ∧ during(I, yesterday) ∧ ∃x.Chair(x) ∧
∃e.e ∈ [base : [pred : sit, agent : john], on : x, time : I, complete : −]

19



How do we guarantee in (66) that both John and the chair existed during the
sitting event, i.e. during(I, total-time(x)) and during(I, total-time(john))? We can
have a general rule that says: if a object participates in an event with time interval
I then that object exists (at least to some extent) over that time interval:

(67) e ∈ [base : [pred : p, r : x], time : I] → during(I, total-time(x))

For many predicate-role pairs, this can be strengthened to using fully-time, i.e. the
object totally exists over the time interval. For example, the agent of a sitting event
totally exists over the entire length of the event’s time interval.

In contrast, the theme of a creation event only partially exists over the time
interval. For example, now instead of (60) we have:

(68) ∃I.(I < now) ∧ during(I, yesterday)
∧ ∃x.Circle(x) ∧ ∃e.e ∈ [[draw, john, theme : x], I,−]

Remember that ∃x.Circle(x) does not necessarily claim the existence of a full circle,
only the existence of some conceptual instance x located in time-space(x) in which
there are circle-parts. Only if the accomplishment culminates do we have a full circle.
This is guaranteed by the following meaning postulates:

(69) For a creation predicate p,
e ∈ [[p, theme : x], I,−] → during(I, creation-time(x))
e ∈ [[p, theme : x], I, +] → I = creation-time(x)

By following previous definitions (including that of during), we can prove:

(70) For a creation predicate p,
e ∈ [[p, theme : x], I,−] ∧K(x) → partial[↑](K, space-time(x), I)
e ∈ [[p, theme : x], I, +] ∧K(x) → true(K, space-time(x),max(I))

6 Conclusion

Surely more work remains to be done in analyzing more cases and constructions,
including an investigation of the interaction between aspectual classes and the various
VP-modifiers and operators. But I think the proposals here provide a flexible and
rich framework to work with. I plan to integrate the proposal here with my recent
work on developing a lexicon and a syntax-semantics interface in Glue Semantics (as
was briefly mentioned in section 4.1).

References

Allen, James F. 1991. Time and time again: The many ways to represent time. Interna-
tional Journal of Intelligent Systems 6.

Cooper, Robin. 1985. Aspectual classes in situation semantics. Report No. CSLI-84-14C,
CSLI, Stanford University.

Dalrymple, Mary. 2001. Lexical Functional Grammar , volume 34 of Syntax and Semantics
Series. Academic Press.

20



De Swart, Henriëtte. 1998. Aspect shift and coercion. Natural Language and Linguistic
Theory 16:347–385.

Dowty, David. 1979. Word meaning and Montague grammar . D. Reidel.
Krifka, Manfred. 1998. The origins of telicity. In Events and grammar , ed. Susan Rothstein,

197–235. Dordrecht: Kluwer.
Landman, Fred. 1992. The progressive. Natural Language Semantics 1:132.
Moens, Marc, and Mark Steedman. 1988. Temporal ontology and temporal reference.

Computational Linguistics 14:15–28.
Rothstein, Susan. 2004. Structuring events. Malden, MA: Blackwell.
Vendler, Zeno. 1967. Verbs and times. Linguistics and Philosophy 97–121.
Zucchi, Sandro. 1998. Aspect shift. In Events and grammar , ed. Susan Rothstein, 349–370.
Zucchi, Sandro. 1999. Incomplete events, intensionality and imperfective aspect. Natural

Language Semantics 7:179–215.

21


