
DRT and Situation Semantics

Paper for Ling237, Semantics Seminar on Situation Semantics (Spring 2006)

Iddo Lev

April 16, 2007

1 Overview

In a context where John and Mary are running against each other in an election, the
salient reading of the sentence:

(1) John and Mary think they will win.

is that John thinks he will win and Mary thinks she will win.
In DRT (Kamp, 1981; Kamp and Reyle, 1993; van Eijck and Kamp, 1997), and

its compositional λ-DRT versions such as (Bos et al., 1994), this sentence poses a
problem. To sketch the problem, the issue is that the compositional construction will
create something like:

(2) [z = john⊕mary | (λx.think(x, [ythey =? | win(y)]))¤(z)]

The ¤ here is my addition. It signals that the formula is underspecified regarding
whether the predicate is applied on z collectively or distributively.

The problem here is that the discourse variable y needs to be resolved to x.
However, y and x are different kinds of terms. The former is a discourse variable
while the latter is a normal variable.

Equating the two variables poses the following problem. In the interpretation
of DRSs using a model-theoretic semantics (along the lines of (Muskens, 1995, 1996;
Kohlhase et al., 1996; van Eijck and Kamp, 1997)), discourse variables denote entities
in the domain. In contrast, a lambda-abstracted variable like x above does not denote
anything. It is just a notational convenience. There is even a way to get rid of such
variables by using only combinatory functors (see e.g. (Carpenter, 1998, section 2.5)).1

No such omission is possible with discourse variables.
In (Kamp and Reyle, 1993), a similar sentence with a distributive reading specifies

the ¤ in terms of a duplex condition:

(3) [z = john⊕mary |
[u | u ∈ z] ⇒ [| (λx.think(x, [y =? | win(y)]))(u)]] ≡

[z = john⊕mary |
[u | u ∈ z] ⇒ [| think(u, [y =? | win(y)])]]

1A very simple illustration of this point is that a composition of two functions f and g need
not be written as λx.f(g(x)) as it can be written using the functor f ◦ g without resorting to an
“intermediate” variable x.

1

Here the discourse variable y can be equated with the discourse variable u to get the
correct truth conditions.

There is a feeling that this solution is not satisfactory because the discourse
variable u is not independently motivated, and y should really be resolved to x.
Furthermore, we would like to have a form that retains the underspecified ¤ but
resolves the y. Crucially, this solution will not work for a sentence such as:

(4) John and Mary think they like each other.

with the desired representation:

(5) [z = john⊕mary | recip(z, (λxλu.think(x, [y =? | like(y, u)])))]

To obtain the desired reading, where John thinks he likes Mary and Mary thinks she
likes John, the discourse variable y needs to be resolved to the normal variable x.
Here, the recip operator should be taken as a unit. It can float, just like a quantifier
does, and it cannot be expressed (in the general case) in terms of duplex conditions
– see (Dalrymple et al., 1998) for various meanings that a reciprocal could have, and
(Peters and Westerst̊ahl, 2006, section 10.4) for why some of those are not definable
in terms of FOL quantification.

In this paper, I will show how choosing to use Situation Semantics as the underly-
ing model-theoretic semantics for the above representations solves this issue because
both variables turn out to be parameters. Since they are on an equal footing, they
can be equated without posing the problem above. Along the way, I will show the
details of the syntax-semantics interface that are necessary for computing the repre-
sentations.

2 Calculating DRS Representations

2.1 Standard Ways

How are DRSs calculated from the syntactic analysis of a sentence? Bos et al. (1994)
present λ-DRS, a proposal to extend the syntax-to-semantics mappings to handle
DRSs. Here is a simple λ-DRS lexicon:

(6) John λP.[l | name(l) = ‘John’]⊕ P (l)
likes λyλx.[e | like(e), subj(e, x), obj(e, y)]
book λx.[| book(x)]
a λPλQ.[l |]⊕ P (l)⊕Q(l)
every λPλQ.[| ([l |]⊕ P (l)) ⇒ Q(l)]
that λQλPλx.P (x)⊕Q(x) (relative clause)

Semantic pieces are combined by using an extended functional composition:

(7) φ¯ ψ := λ−→σ .φ(λv.(ψ(v))(−→σ))

This operator extends standard function composition λv.φ(ψ(v)) by accepting a n-
place predicate ψ and binding only its first argument, while abstracting over the
remaining n− 1 arguments in −→σ .

Example derivation:

2

(8) John read a book.

• a ¯ book =
(λPλQ.([l |]⊕ P (l)⊕Q(l)))(λx.[| book(x)]) =
λQ.([l |]⊕ (λx.[| book(x)])(l)⊕Q(l)) =
λQ.([l |]⊕ [| book(l)]⊕Q(l)) =
λQ.([l | book(l)]⊕Q(l))

• (a ¯ book) ¯ read =
(λQ.([l | book(l)]⊕Q(l)))(λyλx.[e | read(e), subj(e, x), obj(e, y)]) =
λx.(λQ.([l | book(l)]⊕Q(l)))(λy.[e | read(e), subj(e, x), obj(e, y)]) =
λx.([l | book(l)]⊕ (λy.[e | read(e), subj(e, x), obj(e, y)])(l)) =
λx.([l | book(l)]⊕ [e | read(e), subj(e, x), obj(e, l)]) =
λx.([l, e | book(l), read(e), subj(e, x), obj(e, l)])

• John ¯ ((a ¯ book) ¯ read) =
(λP.[l2 | name(l2) = ‘John’]⊕P (l2))(λx.([l, e | book(l), read(e), subj(e, x), obj(e, l)])) =
[l2 | name(l2) = ‘John’]⊕(λx.([l, e | book(l), read(e), subj(e, x), obj(e, l)]))(l2) =
[l2 | name(l2) = ‘John’]⊕ ([l, e | book(l), read(e), subj(e, l2), obj(e, l)]) =
[l, l2, e | name(l2) = ‘John’, book(l), read(e), subj(e, l2), obj(e, l)])

This idea was later revised using Hole Semantics (Reyle, 1993; Blackburn and
Bos, 2005) in order to deal with scope ambiguities.

2.2 Existing Suggestions for Glue-DRT

The above is essentially the same as a very basic and simple lambda-based semantic
composition, except that λ-DRSs are used instead of simpler meaning terms. This
simple scheme has shortcomings which I discussed in sections 3.1.4 and 7.6 of (Lev,
2007). Instead, we can use glue semantics (Dalrymple, 2001) for the composition
because it is compatible with different meaning representation languages, including
DRSs. This idea was first proposed in (van Genabith and Crouch, 1999; Kokkonidis,
2005), and here I present a slight variation on it. Below, I will assume familiarity
with the basic glue semantics specification from chapters 3 and 4 of (Lev, 2007).

In the λ-DRT lexicon, instead of relying on standard lambda-composition, we can
rely on the usual glue categories:

(9) John λP.[l̂ | name(l̂) = ‘John’]⊕ P (l̂) : (le → Ht) → Ht

where l is the label of my NP
likes λxλy.[e | like(e), subj(e, x), obj(e, y)] : ae → be → lh

where a is the label of my subject, b is the label of my object,
and l is the label of my clause.

book λx.[| book(x)] : lv
e → lr

t

where l is the label of my NP
a λPλQ.[l̂ |]⊕ P (l̂)⊕Q(l̂) : (lve → lr

t) → (le → kt) → kt

where l is the label of my NP and k is the label of the clause I scope at
every λPλQ.[([l̂ |]⊕ P (l̂)) ⇒ Q(l̂)] : ditto
that λQλPλx.P (x)⊕Q(x) : (ae → bt) → (lve → lr

t) → lv
e → lr

t (relative clause)

The hat ˆ is a function that takes a basic glue label and returns a discourse
variable. It allows us to link glue categories and discourse variables. This is use-
ful because we have constraints on possible anaphoric links which are expressed in

3

terms of positions in the syntactic C- and F-structures. Those constraints induce
constraints on anaphoric links between glue categories, and those in turn, through
the hat function, induce constraints on equations between discourse variables.

Thus, if a NP with glue category f precedes a NP with glue category g in the sen-
tence, we can add the constraint not-antecedent(g, f) (g is not a possible antecedent
of f if f is an anaphoric expression), and this constraint will later prevent us from
equating f̂ with ĝ. In addition, syntactic binding theory gives us constraints such as:
a reflexive pronoun must be anaphoric to a NP in the same minimal clause, while a
non-reflexive pronoun cannot co-refer with a NP in the same minimal clause. These
constraints are similarly expressed in terms of glue categories, and affect the possible
equations between the corresponding discourse variables.

2.3 My Version

While this solution works, it is very tedious to require writing DRS structures and
⊕ operators for every entry – many entries have nothing to do with anaphora (see
e.g. book and that). Also notice the treatment of proper names as scoping quantifiers
rather than non-scoping terms (see the discussion about this in (Lev, 2007, section
3.1.4)). It would also be nice if we did not have to revise all the glue entries that
have already been developed before anaphora was considered. What we really want
is to keep what we have done, and change only the parts that have something to do
with anaphora. For example, we do not want to change our treatment of nouns and
relative clauses. Even for verbs, if we decide for now not to handle expressions that
are anaphoric to event variables, we can keep our old specifications for verbs.

My aim is that at the end of the glue composition phase, we will end up with a
representation that looks something like this:

(10) Every man that saw Mary liked her.
every(λx.man(x) ∧ ∃e1.see(e1) ∧ subj(e1, x) ∧

obj(e1, entity(l1, {name(l1) = ‘Mary’, female(l1), individual(l1)})),
λx.∃e2.like(e2) ∧ subj(e2, x) ∧ obj(e2, dref(l2, {individual(l2), female(l2)})))

Notice that overall the representation looks like a simple, non-DRS representation,
and only certain pieces mention discourse variables. The operators entity and dref
could be seen as shorthands as follows:

(11) entity(v, S) ≡ [〈v, S〉 | v]
dref(v, S) ≡ [〈v, ({v =?} ∪ S)〉 | v]

In these definitions, I use a slightly different version of DRSs. Instead of a pair con-
sisting of a set of discourse variables and a set of conditions, I have a pair whose
second element is just one meaning expression and whose first element is a set of
conditioned discourse variables, where a conditioned discourse variables is a pair con-
sisting of a discourse variable and a set of associated conditions. In (10), the discourse
variable l1 has three conditions associated with it, including name(l1) =‘Mary ’. I
use this form to make it easier to locate the constraints that are relevant for each
discourse variable.

4

In a certain sense, I am already getting closer to Situation Semantics here. The
v in these definitions can be seen as a parameter that has restrictions on it. In the
case of dref , there is a restriction v =?, whose resolution (equating it to another
parameter) is determined by the discourse context.

The entity and dref expressions act locally as a v in the expression where they
appear. The discourse variable introduced by an entity expression should be acces-
sible everywhere, but the entity expression is written in situ rather than in a global
place to make it easier to write the glue semantics specification (the information will
be moved up by the anaphora resolution algorithm below). The information in a dref
expression should be used by the anaphora resolution module when the pronoun is
resolved and the dref expression is replaced by another variable.

In light of this, we change the glue rule for proper names from (Lev, 2007) to:

(12) proper name n of gender g:
entity(l̂, {name(l̂) = n, gender(l̂) = g}) : le

where l is the label of my NP

We also add for pronouns:

(13) pronoun with gender g and number n (sg or pl):
dref(l̂, {gender(l̂) = g, number(l̂) = n})

And that’s it. There is no need to make any more changes to the glue specifi-
cation. All the rest of the work will be done by the anaphora resolution module, as
described below. This includes treating quantifier expressions as a shorthand for the
appropriate DRS structures. Thus, we get a modular solution: The specification of
composition is simple, supplying just enough information needed to handle anaphora.
Anaphora resolution using DRSs is done in a separate module, and the writer of the
glue specification does not need to worry about using DRSs explicitly. The justifica-
tion for this approach is that it produces the same results that would be obtained if
we followed the more explicit glue-DRT approach above.

3 Resolving the Representations

Since the glue specification was left mostly unchanged, I need to define here how to
expand some of the expressions, such as the quantifiers, and how to deal with entity
and dref expressions.

3.1 Preparing

3.1.1 Entity Raising

The conditions inside an entity expression should be moved to the topmost DRS
because there should be no DRS-accessibility restrictions on proper names serving as
antecedents of anaphoric expressions.2 Therefore, every entity(l, S) in ϕ is replaced

2This is not the most general treatment because in some sentences in NL, proper names may not
be so accessible. For example: “The John from our street met the John that was elected as Mayor.”
However, this treatment will do for now.

5

with l to obtain ϕ′. Additionally, for every such entity, the pair 〈l, S〉 is added to a
collection C. Then, a top DRS is created:

(14) [C | ϕ′]

For example,

(15) John saw Mary.
∃e.see(e)∧subj(e, entity(l1, {name(l1) = ‘John’, gender(l1) = male, num(l1) = sg}))∧

obj(e, entity(l2, {name(l2) = ‘Mary’, gender(l2) = female, num(l2) = sg}))
⇒
[〈l1, {name(l1) = ‘John’, gender(l1) = male, num(l1) = sg}〉,
〈l2, {name(l2) = ‘Mary’, gender(l2) = female, num(l2) = sg}〉 |
∃e.see(e) ∧ subj(e, l1) ∧ obj(e, l2)]

3.1.2 Quantifier Expansion

(16) tr(a(P, Q)) = [〈l, tr(P (l))〉 | tr(Q(l))]
tr(every(P,Q)) = [| ([〈l, tr(P (l))〉 |] ⇒ [| tr(Q(l))])]
tr(no(P, Q)) = [| ¬tr(a(P,Q))]

3.1.3 Merge Embedded DRS

If the body of a DRS is itself a DRS, the two can be merged:

(17) tr([V1 | [V2 | B]]) = tr([V1 ∪ V2 | B])

3.2 Resolution of dref

After all the previous transformations are done, we obtain a normal DRS, and we
are ready to resolve anaphora in it. We do this by recursively traversing top-down
the DRS for the entire text. At each step, the possible antecedents of a pronoun
are those that are possible according to the DRS accessibility relations. These are
remembered in a second argument to the resolve predicate as follows:

(18) start-resolve(ϕ) = resolve(ϕ, {})
resolve([V |D], S) = resolve(D,V ∪ S)
resolve(([V |B] ⇒ D), S) = resolve([V |B], S) ⇒ resolve(D, V ∪ S)

Notice that when we enter the right-hand-side of a DRS implication, we add the
discourse variables of the implication’s antecedent to the list of possible antecedents.
This is in accordance with the definition of DRS accessibility and allows us to resolve
donkey anaphora correctly.

Furthermore, the algorithm takes into account the gender constraints, as they are
written in the conditions associated with the discourse variables. We also take into
account the not-antecedent and not-eq constraints from section 2.2. For example,
not-ant(g, h) prevents the algorithm from resolving a dref(ĥ, . . .) to ĝ.

There may be more than one possible resolution to a dref expression. In that
case, we can find and return all possibilities. If a dref cannot be resolved to any

6

discourse variable, then the particular interpretation that is processed is incorrect.
For example, consider:

(19) a. Every man likes a woman. She is happy.
b. every(man, λx.a(woman, λy.like(x, y)))⊕ happy(dref(l, {female(l)}))
c. a(woman, λy.every(man, λx.like(x, y)))⊕ happy(dref(l, {female(l)}))

The first sentence in (19)a has a scope ambiguity, so the two possible resulting rep-
resentations are (19)b,c. These are converted to the DRS representations:

(20) a. [| ([〈l1,man(l1)〉 |] ⇒ [〈l2, woman(l2)〉 | like(l1, l2)]), happy(dref(l, {female(l)}))]
b. [〈l2, woman(l2)〉 | ([〈l1,man(l1)〉 |] ⇒ [| like(l1, l2)]), happy(dref(l, {female(l)}))]

In the first representation, l2 is not accessible to l, and as there is no other possibility,
dref cannot be resolved. In the second representation, l2 appears in the top DRS
and so is accessible to l, so that representation can be resolved to:

(21) [〈l2, {woman(l2), female(l)}〉 | ([〈l1,man(l1)〉 |] ⇒ [| like(l1, l2)]), happy(l2)]

4 Plurals and Anaphora

4.1 Plurals and Ambiguity

Following (Link, 1998), I will assume that the domain includes pluralities, which are
constructed using the summation operator ⊕. Thus, the initial meaning representa-
tion of (22)a is (22)b.

(22) a. John, Bill, and Mary sneezed.
b. (λx.sneeze(x))¤(john⊕ bill ⊕mary)

The ¤ here signifies that the formula is underspecified regarding whether the
predicate is applied on the plurality collectively or distributively. In the first case,
the ¤ can just be dropped. In the second case, P¤(a) is resolved to ∀x.x ∈ a → P (x).
The ¤ is always used with a plural NP. In the case of the verb sneeze, it is always
disambiguated to a distributive application. With a collective predicate such as meet,
it is always disambiguated to a collective application. With an ambiguous predicate
such as weigh 200 lbs, both options are possible.

4.2 Conjoined Names

The F-structure of a conjunction of names is, for example:

(23) John, Bill, and Mary sneezed.

pred ‘sneeze〈subj〉’

subj

coord and

coord-level np

[
pred ‘john’

]
[
pred ‘bill’

]
[
pred ‘mary’

]

7

The glue specification is:

(24) A coordination NP whose label is l

where (l coord) = and and (l coord-level) = np:
λx.⊕x : conj(l)e → le

For the rightmost conjunct, whose label is k:
λx.{x} : ke → conj(l)e

For any other conjunct, whose label is k:
λxλy.({x} ∪ y) : ke → conj(l)e → conj(l)e

Note that {x}∪y is intended to be evaluated during the construction of the expression
for the NP in the glue derivation. Thus, at the end of the glue derivation, we will get
(25)b rather than (25)a.

(25) “John, Bill, and Mary”
a. ({john} ∪ ({bill} ∪ {mary}))
b. ⊕{john, bill, mary} (shorthand for: john⊕ bill ⊕mary)

This was a simplification because just as with a single name in (12), we want to
create an entity expression that could be the antecedent of other anaphoric expres-
sions. Furthermore, that entity expression acts as a kind of quantifier, represented
by the ¤, because in the distributive case, we want to quantify over the members of
the plurality:

(26) (λx.sneeze(x))¤(T)
where:
T = entity(l̂1, {l̂1 = ⊕({entity(l̂2, {name(l̂2) = ‘John’}),

entity(l̂3, {name(l̂3) = ‘Mary’}),
entity(l̂4, {name(l̂4) = ‘Bill’})})})

To get this, we revise the first line of (24) to:

(27) λxλP. P¤(entity(l̂, {l̂ = ⊕(x)})) : conj(l)e → (le → Ht) → Ht

5 The Problem with Composite Predicates

Consider again sentence (1):

(28) John and Mary think they will win.

Using the above machinery, we get:

(29) think they will win =
λx.think(x,win(dref(l4, num(l4) = pl)))
John and Mary =
λP. P¤(entity(l1, l1 = ⊕({entity(l2, l2 = john), entity(l3, l3 = mary)})))
John and Mary think they will win. =
(λx.think(x,win(dref(l4, num(l4) = pl))))¤(entity(l1, l1 = ⊕({entity(l2, l2 = john),

entity(l3, l3 = mary)})))

8

With entity raising, we get:

(30) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
(λx.think(x,win(dref(l4, num(l4) = pl))))¤(l1)]

5.1 Resolution of dref to an Abstracted Variable

Now you can see that we must allow l4 to be resolved to x, to get:

(31) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
(λx.think(x,win(x)))¤(l1)]

And once we resolve ¤ to the distributive reading, we get:

(32) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
∀y ∈ l1.think(y, win(y))]

So we need to revise the algorithm in section 3.2 to allow a dref to be resolved to a
lambda variable that appears somewhere above it.

I already explained in section 1 that this resolution poses a problem because
according to the MTS definitions, dref should be resolved to a discourse variable,
which denotes a dynamic discourse variable in the domain, and not to a normal
variable like x.

5.2 Situation Semantics Solution

A possible way to make the equating of the two variables “kosher” is to make both
of them parameters in the sense of Situation Semantics (Barwise and Perry, 1983;
Devlin, 1991, 2006; Gawron and Peters, 1990). I present here a simplified version
of Situation Semantics (only what is really needed for the solution), and the reader
is invited to consult those sources for further details. In this simplified version, the
meaning of a sentence is taken to consist of a structured object called infon. We can
then further check whether a particular situation in a particular context supports
this infon (the claim that the sentence is making is true in the situation) or not (the
claim is false in the situation) or neither (the situation is silent on that matter).
Furthermore, the structured object may contain certain objects called parameters, in
which case it is a parametric object. Practitioners of Situation Semantics go to great
pains to emphasize that a parameter is not a variable in the formal language but an
element of the domain. Therefore, a whole new mathematical notation for talking
about the structured objects is used.

An important difference between the lambda calculus and Situation Semantics
is this: In the former, (33)a and (33)b are two different expressions in the formal
language which nonetheless denote the same mathematical object. In contrast, (33)c
and (33)d denote two different mathematical objects (in this case, infons) in Situation
Semantics.

(33) assume t can be freely substituted for x in ϕ

a. (λx.ϕ)(r) (e.g.: (λx.sleep(x))(r))
b. ϕ[r/x] (e.g.: sleep(r))

9

c. 〈〈[p | ϕ], r〉〉 (e.g.: 〈〈[p | 〈〈sleep, p〉〉], r〉〉)
d. ϕ[r/p] (e.g.: 〈〈sleep, r〉〉)

If we wish, we could say that (under normal conditions), if (33)c and (33)d are infons,
then one is supported by a situation iff the other is. However, we do not have to
make this move.

Using the notation of Situation Semantics,3 we could say that the meaning of the
sentence (28) should be represented as (34) rather than (29).

(34) 〈〈 [p | 〈〈think, p, 〈〈win, qthey〉〉〉〉] , rσ 〉〉
where σ is 〈〈=, r, sJohn ⊕ tMary〉〉

The terms p, q, r, s, and t are all parameters, not variables.4 A parameter may have
restrictions on the possible values it could refer to. Thus, sJohn has the restriction
that the parameter may refer only to a human entity whose name is “John.” So now
the denotation of the semantic representations we assign to sentences are not func-
tions and predicates but rather structured mathematical objects from the Situation
Semantics ontology.

How does all this help us? First, we do not necessarily need to use the ¤ mecha-
nism. This is possible if we do not say that (33)c is supported by a situation iff (33)d
is, and instead say that this holds only in some contexts. In other contexts, (33)c is
supported in a situation iff the following infon is supported there:

(35) 〈〈forall, u, 〈〈imply, 〈〈∈, u, r〉〉, ϕ[u/p]〉〉〉〉

Second, p and q in (34) are both parameters of exactly the same status (and
therefore can be legitimately equated), whereas x and dref had a different status
in (29). Here is how it works. Suppose that in a particular context C1, we are
given further information that the parameter q has a restriction 〈〈=, q, a〉〉 for some
group object a that was mentioned previously in the context. Then in context C1,
the sentence (28) means that both John and Mary think that the group a will win.
In another context C2, we are given the information that the parameter q has a
restriction 〈〈=, q, p〉〉. So in C2, the proposition’s meaning is:

(36) 〈〈 [p | 〈〈think, p, 〈〈win, q〈〈=,q,p〉〉〉〉〉〉] , rσ 〉〉
where σ is 〈〈=, r, sJohn ⊕ tMary〉〉

Because p is abstracted over, (36) denotes the same object as (37) under the rules of
Situation Semantics.

(37) 〈〈 [p | 〈〈think, p, 〈〈win, p〉〉〉〉] , rσ 〉〉
where σ is 〈〈=, r, sJohn ⊕ tMary〉〉

This is what we wanted to get. If we further assume that C2 is one of those contexts
where (33)c is supported in a situation iff (35) is supported, then we get that in C2,
the following is supported:

3I am using here a simplified version of the notation in (Gawron and Peters, 1990).
4If we considered (34) to be an expression in something like a sorted first-order language, we

would say that each of p, q, r, s, and t is an object constant, whose denotation is an element (a
member of the domain) of type “parameter”.

10

(38) 〈〈forall, u, 〈〈imply, 〈〈∈, u, rσ〉〉, 〈〈think, u, 〈〈win, u〉〉〉〉〉〉〉〉
where σ is 〈〈=, r, sJohn ⊕ tMary〉〉

Let us recap. We started with a representation (29). We made some transfor-
mations to obtain (30). These transformations were justified by the intended model-
theoretic semantics (MTS). However, the transformation from that to (31) was not
justified by the MTS because we equated a language variable with a discourse vari-
able. The solution was to provide a more complex MTS that uses Situation Semantics
objects. In this MTS, equating p and q was justified since they were both of the same
kind (parameters).

Is this move illuminating? Some would say yes. Furthermore, Situation Seman-
tics has several other independent motivations, and is needed when analyzing more
complex intensional and context-dependant linguistic constructions, so if one is using
that framework, one might as well use the solution proposed here.

When moving to Situation Semantics, we essentially decide to rely on some dis-
tinctions between representations which previously we considered to be equivalent.
If one takes this process to its extreme, we eventually decide that no two represen-
tations are inherently equivalent. This kind of move might in fact be unavoidable
given the nature of natural language. Two distinct expressions that might at first
seem equivalent in all respects may later turn out to have some subtle differences in
meaning, which surface in different contexts, and so the two expressions should be
given similar but distinguishable meanings (and representations).

5.3 Resolution of a Singular dref , Revisited

Now that we know that a plural dref must be allowed to refer to an abstracted
variable, should we allow this for a singular dref as well? In (39), this would give us
(39)c rather than (39)b.

(39) a. John thinks that he is smart.
b. think(entity(l̂1, {name(l̂1) = ‘John’}), smart(dref(l̂2, sg,male))))
c. (λx.think(x, smart(dref(l̂2, sg, male))))app(entity(l̂1, {name(l̂1) = ‘John’}))

This requires complicating the entries of NPs. For example, we need (40)b instead
of (40)a.

(40) proper name n

a. entity(l̂, {name(l̂) = n}) : le where l is my NP’s label
b. λP.P (entity(l̂, {name(l̂) = n})) : (le → Ht) → Ht

where l is my NP’s label and Ht is the topmost clause

According to some theories of ellipsis, e.g. (Gawron and Peters, 1990), both the
bound reading (39)c and the direct reading (39)b are in fact needed, as they provide
the “sloppy” and “strict” readings of sentences such as:

(41) John thinks he is smart. Bill does too.

If (39)b is used, then the predicate λs.think(x, smart(john)) is applied on Bill in
the second sentence to get the strict reading. If (39)c is used, then the predicate
λs.think(x, smart(x)) is first created in the first sentence and so it is available in the
context to be applied on Bill in the second sentence, giving the sloppy reading.

11

5.4 The Solution Works for Reciprocals Too

Consider the sentence:

(42) John and Mary think they like each other.

I gave an analysis of it in (Lev, 2006). The entry for they which I used there was in the
line of using glue semantics derivations for doing anaphora resolution, as described
in section 8.2 of (Lev, 2007). However, that section explains in detail why using glue
semantics derivations for anaphora resolution is not a good idea, and instead, the
Glue-DRT-based solution is better. Therefore, I will now recreate the analysis of
(42) in those terms, and this solves the problem that I mentioned in footnote 9 of
(Lev, 2006).

Instead of (22) in (Lev, 2006), we now have:

(43) [[John and Mary]2 think [[they]4 like [each other]5]3]1
λP.P¤(entity(l1, l1 = ⊕({entity(l2, l2 = john),

entity(l3, l3 = mary)}))) : (2e → Ht) → Ht

think : 2e → 3t → 1t

dref(4̂e, {num(4̂e) = pl}) : 4e

like : 4e → 5e → 3t

λRλz.recip(z,R) : (5ant
e → 5e → lt) → 5ant

e → lt

The first reading of (43) in which recip takes narrow scope can only be obtained
if l = 3 and 5ant = 4. We then get:

(44) λRλz.recip(z, R) : (4e → 5e → 3t) → 4e → 3t

+like ⇒ λz.recip(z, like) : 4e → 3t

+they ⇒ recip(dref(4̂e, ..), like) : 3t

+think ⇒ λu.think(u,recip(dref(4̂e, ..), like)) : 2e → 1t

+jm ⇒ (λu.think(u,recip(dref(4̂e, ..), like)))¤(entity(l1, ..)) : 1t

With entity raising, we get:

(45) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
(λu.think(u,recip(dref(4̂e, ..), like)))¤(l1)]

Now, ¤ should be resolved distributively (because of world knowledge, we know that
think can hold only on individuals and not on collectives, unless we are in a science
fiction situation). Also, because dref(4̂e, ..) is the first argument of recip, it must
not be resolved to an individual, so its antecedent cannot be u and must be l1. This
gives us:

(46) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
∀y ∈ l1.think(y,recip(l1, like))]

= John thinks ‘John and Mary like each other’, and Mary thinks the same.

The second reading of (43) in which recip takes wide scope can only be obtained
if l = 1 and 5ant = 2.

12

(47) λRλz.recip(z, R) : (2e → 5e → 1t) → 2e → 1t

they + like ⇒ λy.like(dref(4̂e, ..), y) : 5e → 3t

+think ⇒ λxλy.think(x, like(dref(4̂e, ..), y)) : 2e → 5e → 1t

+recip ⇒ λz.recip(z, λxλy.think(x, like(dref(4̂e, ..), y))) : 2e → 1t

+jm ⇒ (λz.recip(z, λxλy.think(x, like(dref(4̂e, ..), y))))¤(entity(l1, ..)) : 1t

With entity raising, we get:

(48) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
(λz.recip(z, λxλy.think(x, like(dref(4̂e, ..), y))))¤(l1)]

Now, ¤ must be resolved collectively because z is the first argument of recip. If
dref(4̂e, ..) is resolved to l1 then we get the (less likely) reading where John thinks
that John and Mary like Mary and Mary thinks that John and Mary like John. This
time, however, dref(4̂e, ..) can also be resolved to x, just like dref(l4) was resolved
to x in (30)-(31). Since x is ‘closer’ than l1 to dref(4̂e), this resolution is preferred,
giving us:

(49) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
recip(l1, λxλy.think(x, like(x, y)))]

= John thinks that he likes Mary and Mary thinks she likes John.

What prevents dref(4̂e) from being resolved to y? In the sentence, dref orig-
inates from the NP they, which linearly precedes the NP each other from which y
originates. Therefore we have a constraint that they cannot be anaphoric to the later
NP. This constraint in terms of syntactic positions induces a constrain in terms of
glue categories. All we then need is to remember the glue category from which each
variable came. Thus, y came from the NP each other and so cannot serve as the
antecedent of they, whereas x came from the NP John and Mary and can serve as
the antecedent.

What about the two remaining options for the values of l and 5ant? If l = 3 and
5ant = 2, then the premises cannot combine in any glue derivation.5 However, if
l = 1 and 5ant = 4, we actually get a third reading:6

(50) λRλz.recip(z, R) : (4e → 5e → 1t) → 4e → 1t

think + like ⇒ λzλxλy.think(z, like(x, y)) : 2e → 4e → 5e → 1t

+recip ⇒ λzλu.recip(u, λxλy.think(z, like(x, y))) : 2e → 4e → 1t

+they ⇒ λz.recip(dref(4̂e, ..), λxλy.think(z, like(x, y))) : 2e → 1t

+jm ⇒ (λz.recip(dref(4̂e, ..), λxλy.think(z, like(x, y))))¤(entity(l1, ..)) : 1t

With entity raising, we get:

(51) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
(λz.recip(dref(4̂e, ..), λxλy.think(z, like(x, y))))¤(l1)]

5To see this, note that 4e would have to combine with 4e → 5e → 3e to give 5e → 3e. But this
cannot fit as the first argument of recip : (2e → 5e → 3t) → 2e → 3t. It will not help to try to first
combine 5e → 3e with 2e → 3e → 1t.

6I missed this one in (Lev, 2006) but it’s possible there too.

13

Since z is the first argument of think, it should be individual, and so ¤ should be
resolved distributively. In contrast, dref(4̂e) is the first argument of recip and
should refer to a collection, so it cannot be resolved to z but only to l1. Thus we get:

(52) [〈l1, {l1 = ⊕(l2, l3)}〉, 〈l2, {l2 = john}〉, 〈l3, {l3 = mary}〉 |
∀z ∈ l1.recip(l1, λxλy.think(z, like(x, y)))]

= John thinks that John likes Mary and John thinks that Mary likes John and
Mary thinks that John likes Mary and Mary thinks that Mary likes John.

This result is obviously different from (49), but it is also not the same as (46)
because although the propositions recip(a⊕ b,R) and R(a, b) ∧R(b, a) are logically
equivalent, they are not the same proposition and not the same thought (a person
thinking a proposition may not also think all its logically equivalent propositions).
Is this third reading available for the sentence? It is hard to say. If we want to block
it, we can require in the glue specification of a reciprocal that the clause over which
the reciprocal scopes is the minimal clause containing the reciprocal’s antecedent:

(53) λzλR.recip(z, R) : ae → (ae → le → kt) → kt

where l is my label, k is the label of the clause that I scope over,
and a is my antecedent’s label;
where k = the label of the minimal clause containing a

This is a natural requirement – see Problem 3 in section 8.2.3 of (Lev, 2007) for a
discussion of why this restriction is required also in the bound-anaphora analysis of
pronouns.

(54)

a

pred see〈 b , g 〉

subj b

[
pred bill

ntype name

]

obj g

spec the

pred girl

adjunct
{
〈A2: w 〉

}

adjunct

〈A1: w

pred with〈 h 〉

obj h

[
spec the

pred telescope

]

〉

(55)

a

pred see〈 g , h 〉

subj g

[
spec every

pred man

]

obj h

[
spec some

pred woman

]

(56) ψ : A : S1 δ : AL → B : S2

δ(λvi1 , . . . , λvin .ψ) : B : S1 ∪ S2

provided S1 ∩ S2 = ∅ and L ⊆ S1

and L = [i1, . . . , in]

14

(57) C1 : ψ : A : PS1 C2 : δ : AL → B : PS2

C1 ∧ C2 : δ(λvi1 , . . . , λvin
.ψ) : B : PS

provided C1 ∧ C2 6= 0
and complement(PS1, PS2)
and L ⊆ PS1 and L = [i1, . . . , in]
and PS = union(C1 ∧ C2, PS1, PS2)

(58) A : S1 A → B : S2

B : S

provided S1 ∩ S2 = ∅
and S = S1 ∪ S2

(59) C1 : A : PS1 C2 : A → B : PS2

C1 ∧ C2 : B : PS

provided C1 ∧ C2 6= 0
and complement(PS1, PS2)
and PS = union(C1 ∧ C2, PS1, PS2)

References

Barwise, Jon, and John Perry. 1983. Situations and attitudes. Bradford Books – MIT
Press.

Blackburn, Patrick, and Johan Bos. 2005. Working with discourse representation theory:
An advanced course in computational semantics. http://www.blackburnbos.org/.

Bos, Johan, E. Mastenbroek, S. McGlashan, S. Millies, and M. Pinkal. 1994. A com-
positional DRS-based formalism for NLP applications. In Proc. of the International
Workshop on Computational Semantics.

Carpenter, Bob. 1998. Type-logical semantics. MIT Press.
Dalrymple, Mary. 2001. Lexical Functional Grammar , volume 34 of Syntax and Semantics

Series. Academic Press.
Dalrymple, Mary, Makoto Kanazawa, Yookyung Kim, Sam Mchombo, and Stanley Peters.

1998. Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy
21:159–210.

Devlin, Keith. 1991. Logic and information. Cambridge University Press.
Devlin, Keith. 2006. Situation theory and situation semantics. In Handbook of the history

of logic, ed. Dov M. Gabbay and John Woods, volume 7, 601–664.
van Eijck, Jan, and Hans Kamp. 1997. Representing discourse in context. In Handbook of

logic and language, ed. Johan van Benthem and Alice ter Meulen. The MIT Press.
Gawron, Jean Mark, and Stanley Peters. 1990. Anaphora and quantification in situation

semantics. CSLI.
van Genabith, Josef, and Richard Crouch. 1999. How to glue a donkey to an f-structure

or porting a dynamic meaning representation language into LFG’s linear logic based
glue language semantics. In Computing meaning, volume 1 , ed. Harry Bunt and Rein-
hard Muskens, volume 73 of Studies in Linguistics and Philosophy , 129–148. Kluwer
Academic Press.

Kamp, Hans. 1981. A theory of truth and semantic representation. In Formal methods in
the study of language, ed. Jeroen Groenendijk, T.M.V. Janssen, and Martin Stokhof,
277–322. Mathematical Centre Tract 135, Amsterdam.

Kamp, Hans, and Uwe Reyle. 1993. From discourse to logic. Dordrecht: Kluwer.
Kohlhase, Michael, Susanna Kuschert, and Manfred Pinkal. 1996. A type-theoretic seman-

tics for lambda-drt. In Proc. of the 10th Amsterdam Colloquium, ed. P. Dekker and
M. Stokhof, 479–498. de Gruyter.

Kokkonidis, Miltiadis. 2005. Why glue your donkey to an f-structure when you can con-
strain and bind it instead? In Proceedings of LFG05 Conference, ed. Miriam Butt and
Tracy Holloway King. CSLI Publications.

15

Lev, Iddo. 2006. On the syntax-semantics interface of overt and covert reciprocals. Paper
for Ling223B, seminar on Quantification, Stanford University.

Lev, Iddo. 2007. Exact computational solutions to problems of natural language conse-
quences. Dissertation draft. http://www.stanford.edu/∼iddolev/pulc/current work.html.

Link, Godehard. 1998. Algebraic semantics in language and philosophy . Number 74 in
CSLI Lecture Notes. CSLI Publications.

Muskens, Reinhard. 1995. Meaning and partiality . CSLI.
Muskens, Reinhard. 1996. Combining montague semantics and discourse representation.

Linguistics and Philosophy 19:143–186.
Peters, Stanley, and Dag Westerst̊ahl. 2006. Quantifiers in language and logic. Oxford

University Press.
Reyle, Uwe. 1993. Dealing with ambiguities by underspecification: Construction, repre-

sentation and deduction. journal of semantics 10:123–179.

16

